gtkkineticscrolling.c 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* GTK - The GIMP Toolkit
 * Copyright (C) 2014 Lieven van der Heide
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library. If not, see <http://www.gnu.org/licenses/>.
 */

#include "config.h"
#include "gtkkineticscrolling.h"

#include <stdio.h>

23 24
#include "fallback-c89.c"

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
/*
 * All our curves are second degree linear differential equations, and
 * so they can always be written as linear combinations of 2 base
 * solutions. c1 and c2 are the coefficients to these two base solutions,
 * and are computed from the initial position and velocity.
 *
 * In the case of simple deceleration, the differential equation is
 *
 *   y'' = -my'
 *
 * With m the resistence factor. For this we use the following 2
 * base solutions:
 *
 *   f1(x) = 1
 *   f2(x) = exp(-mx)
 *
 * In the case of overshoot, the differential equation is
 *
 *   y'' = -my' - ky
 *
 * With m the resistance, and k the spring stiffness constant. We let
 * k = m^2 / 4, so that the system is critically damped (ie, returns to its
 * equilibrium position as quickly as possible, without oscillating), and offset
 * the whole thing, such that the equilibrium position is at 0. This gives the
 * base solutions
 *
 *   f1(x) = exp(-mx / 2)
 *   f2(x) = t exp(-mx / 2)
*/

typedef enum {
  GTK_KINETIC_SCROLLING_PHASE_DECELERATING,
  GTK_KINETIC_SCROLLING_PHASE_OVERSHOOTING,
  GTK_KINETIC_SCROLLING_PHASE_FINISHED,
} GtkKineticScrollingPhase;

struct _GtkKineticScrolling
{
  GtkKineticScrollingPhase phase;
  gdouble lower;
  gdouble upper;
  gdouble overshoot_width;
  gdouble decel_friction;
  gdouble overshoot_friction;

  gdouble c1;
  gdouble c2;
  gdouble equilibrium_position;

  gdouble t;
  gdouble position;
  gdouble velocity;
};

static void gtk_kinetic_scrolling_init_overshoot (GtkKineticScrolling *data,
                                                  gdouble              equilibrium_position,
                                                  gdouble              initial_position,
                                                  gdouble              initial_velocity);

GtkKineticScrolling *
gtk_kinetic_scrolling_new (gdouble lower,
                           gdouble upper,
                           gdouble overshoot_width,
                           gdouble decel_friction,
                           gdouble overshoot_friction,
                           gdouble initial_position,
                           gdouble initial_velocity)
{
  GtkKineticScrolling *data;

  data = g_slice_new0 (GtkKineticScrolling);
  data->lower = lower;
  data->upper = upper;
  data->decel_friction = decel_friction;
  data->overshoot_friction = overshoot_friction;
  if(initial_position < lower)
    {
      gtk_kinetic_scrolling_init_overshoot (data,
                                            lower,
                                            initial_position,
                                            initial_velocity);
    }
  else if(initial_position > upper)
    {
      gtk_kinetic_scrolling_init_overshoot (data,
                                            upper,
                                            initial_position,
                                            initial_velocity);
    }
  else
    {
      data->phase = GTK_KINETIC_SCROLLING_PHASE_DECELERATING;
      data->c1 = initial_velocity / decel_friction + initial_position;
      data->c2 = -initial_velocity / decel_friction;
      data->t = 0;
      data->position = initial_position;
      data->velocity = initial_velocity;
    }

  return data;
}

void
gtk_kinetic_scrolling_free (GtkKineticScrolling *kinetic)
{
  g_slice_free (GtkKineticScrolling, kinetic);
}

static void
gtk_kinetic_scrolling_init_overshoot (GtkKineticScrolling *data,
                                      gdouble              equilibrium_position,
                                      gdouble              initial_position,
                                      gdouble              initial_velocity)
{
  data->phase = GTK_KINETIC_SCROLLING_PHASE_OVERSHOOTING;
  data->equilibrium_position = equilibrium_position;
  data->c1 = initial_position - equilibrium_position;
  data->c2 = initial_velocity + data->overshoot_friction / 2 * data->c1;
  data->t = 0;
}

gboolean
gtk_kinetic_scrolling_tick (GtkKineticScrolling *data,
                            gdouble              time_delta,
                            gdouble             *position)
{
  switch(data->phase)
    {
    case GTK_KINETIC_SCROLLING_PHASE_DECELERATING:
      {
        gdouble exp_part;

        data->t += time_delta;

        exp_part = exp (-data->decel_friction * data->t);
        data->position = data->c1 + data->c2 * exp_part;
        data->velocity = -data->decel_friction * data->c2 * exp_part;

        if(data->position < data->lower)
          {
            gtk_kinetic_scrolling_init_overshoot(data,data->lower,data->position,data->velocity);
          }
        else if(data->position > data->upper)
          {
            gtk_kinetic_scrolling_init_overshoot(data, data->upper, data->position, data->velocity);
          }
        else if(fabs(data->velocity) < 1)
          {
            data->phase = GTK_KINETIC_SCROLLING_PHASE_FINISHED;
            data->position = round(data->position);
            data->velocity = 0;
          }
        break;
      }

    case GTK_KINETIC_SCROLLING_PHASE_OVERSHOOTING:
      {
        gdouble exp_part, position;

        data->t += time_delta;
        exp_part = exp(-data->overshoot_friction / 2 * data->t);
        position = exp_part * (data->c1 + data->c2 * data->t);

        if (position < data->lower - 50 || position > data->upper + 50)
          {
            position = CLAMP (position, data->lower - 50, data->upper + 50);
            gtk_kinetic_scrolling_init_overshoot (data, data->equilibrium_position, position, 0);
          }
        else
          data->velocity = data->c2 * exp_part - data->overshoot_friction / 2 * position;

        data->position = position + data->equilibrium_position;

        if(fabs(position) < 0.1)
          {
            data->phase = GTK_KINETIC_SCROLLING_PHASE_FINISHED;
            data->position = data->equilibrium_position;
            data->velocity = 0;
          }
        break;
      }

    case GTK_KINETIC_SCROLLING_PHASE_FINISHED:
      break;
    }

  if (position)
    *position = data->position;

  return data->phase != GTK_KINETIC_SCROLLING_PHASE_FINISHED;
}