GDBus: prefer getsockopt()-style credentials-passing APIs
Conceptually, a D-Bus server is really trying to determine the credentials of (the process that initiated) a connection, not the credentials that the process had when it sent a particular message. Ideally, it does this with a getsockopt()-style API that queries the credentials of the connection's initiator without requiring any particular cooperation from that process, avoiding a class of possible failures. The leading '\0' in the D-Bus protocol is primarily a workaround for platforms where the message-based credentials-passing API is strictly better than the getsockopt()-style API (for example, on FreeBSD, SCM_CREDS includes a process ID but getpeereid() does not), or where the getsockopt()-style API does not exist at all. As a result libdbus, the reference implementation of D-Bus, does not implement Linux SCM_CREDENTIALS at all - it has no reason to do so, because the SO_PEERCRED socket option is equally informative. This change makes GDBusServer on Linux more closely match the behaviour of libdbus. In particular, #1831 indicates that when a libdbus client connects to a GDBus server, recvmsg() sometimes yields a SCM_CREDENTIALS message with cmsg_data={pid=0, uid=65534, gid=65534}. I think this is most likely a race condition in the early steps to connect: client server connect accept send '\0' <- race -> set SO_PASSCRED = 1 receive '\0' If the server wins the race: client server connect accept set SO_PASSCRED = 1 send '\0' receive '\0' then everything is fine. However, if the client wins the race: client server connect accept send '\0' set SO_PASSCRED = 1 receive '\0' then the kernel does not record credentials for the message containing '\0' (because SO_PASSCRED was 0 at the time). However, by the time the server receives the message, the kernel knows that credentials are desired. I would have expected the kernel to omit the credentials header in this case, but it seems that instead, it synthesizes a credentials structure with a dummy process ID 0, a dummy uid derived from /proc/sys/kernel/overflowuid and a dummy gid derived from /proc/sys/kernel/overflowgid. In an unconfigured GDBusServer, hitting this race condition results in falling back to DBUS_COOKIE_SHA1 authentication, which in practice usually succeeds in authenticating the peer's uid. However, we encourage AF_UNIX servers on Unix platforms to allow only EXTERNAL authentication as a security-hardening measure, because DBUS_COOKIE_SHA1 relies on a series of assumptions including a cryptographically strong PRNG and a shared home directory with no write access by others, which are not necessarily true for all operating systems and users. EXTERNAL authentication will fail if the server cannot determine the client's credentials. In particular, this caused a regression when CVE-2019-14822 was fixed in ibus, which appears to be resolved by this commit. Qt clients (which use libdbus) intermittently fail to connect to an ibus server (which uses GDBusServer), because ibus no longer allows DBUS_COOKIE_SHA1 authentication or non-matching uids. Signed-off-by: Simon McVittie <smcv@collabora.com> Closes: #1831
Please register or sign in to comment