gvarianttypeinfo.c 27.4 KB
Newer Older
Allison Karlitskaya's avatar
Allison Karlitskaya committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * Copyright © 2008 Ryan Lortie
 * Copyright © 2010 Codethink Limited
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 *
 * Author: Ryan Lortie <desrt@desrt.ca>
 */

23 24
#include "config.h"

Allison Karlitskaya's avatar
Allison Karlitskaya committed
25
#include "gvarianttypeinfo.h"
26 27 28

#include <glib/gtestutils.h>
#include <glib/gthread.h>
29
#include <glib/gslice.h>
30
#include <glib/ghash.h>
Allison Karlitskaya's avatar
Allison Karlitskaya committed
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

/* < private >
 * GVariantTypeInfo:
 *
 * This structure contains the necessary information to facilitate the
 * serialisation and fast deserialisation of a given type of GVariant
 * value.  A GVariant instance holds a pointer to one of these
 * structures to provide for efficient operation.
 *
 * The GVariantTypeInfo structures for all of the base types, plus the
 * "variant" type are stored in a read-only static array.
 *
 * For container types, a hash table and reference counting is used to
 * ensure that only one of these structures exists for any given type.
 * In general, a container GVariantTypeInfo will exist for a given type
 * only if one or more GVariant instances of that type exist or if
 * another GVariantTypeInfo has that type as a subtype.  For example, if
 * a process contains a single GVariant instance with type "(asv)", then
 * container GVariantTypeInfo structures will exist for "(asv)" and
 * for "as" (note that "s" and "v" always exist in the static array).
 *
 * The trickiest part of GVariantTypeInfo (and in fact, the major reason
Matthias Clasen's avatar
Matthias Clasen committed
53
 * for its existence) is the storage of somewhat magical constants that
Allison Karlitskaya's avatar
Allison Karlitskaya committed
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
 * allow for O(1) lookups of items in tuples.  This is described below.
 *
 * 'container_class' is set to 'a' or 'r' if the GVariantTypeInfo is
 * contained inside of an ArrayInfo or TupleInfo, respectively.  This
 * allows the storage of the necessary additional information.
 *
 * 'fixed_size' is set to the fixed size of the type, if applicable, or
 * 0 otherwise (since no type has a fixed size of 0).
 *
 * 'alignment' is set to one less than the alignment requirement for
 * this type.  This makes many operations much more convenient.
 */
struct _GVariantTypeInfo
{
  gsize fixed_size;
  guchar alignment;
  guchar container_class;
};

/* Container types are reference counted.  They also need to have their
 * type string stored explicitly since it is not merely a single letter.
 */
typedef struct
{
  GVariantTypeInfo info;

  gchar *type_string;
  gint ref_count;
} ContainerInfo;

/* For 'array' and 'maybe' types, we store some extra information on the
 * end of the GVariantTypeInfo struct -- the element type (ie: "s" for
 * "as").  The container GVariantTypeInfo structure holds a reference to
 * the element typeinfo.
 */
typedef struct
{
  ContainerInfo container;

  GVariantTypeInfo *element;
} ArrayInfo;

/* For 'tuple' and 'dict entry' types, we store extra information for
 * each member -- its type and how to find it inside the serialised data
 * in O(1) time using 4 variables -- 'i', 'a', 'b', and 'c'.  See the
 * comment on GVariantMemberInfo in gvarianttypeinfo.h.
 */
typedef struct
{
  ContainerInfo container;

  GVariantMemberInfo *members;
  gsize n_members;
} TupleInfo;


/* Hard-code the base types in a constant array */
static const GVariantTypeInfo g_variant_type_info_basic_table[24] = {
#define fixed_aligned(x)  x, x - 1
113
#define not_a_type             0,
Allison Karlitskaya's avatar
Allison Karlitskaya committed
114 115 116
#define unaligned         0, 0
#define aligned(x)        0, x - 1
  /* 'b' */ { fixed_aligned(1) },   /* boolean */
117
  /* 'c' */ { not_a_type },
Allison Karlitskaya's avatar
Allison Karlitskaya committed
118
  /* 'd' */ { fixed_aligned(8) },   /* double */
119 120
  /* 'e' */ { not_a_type },
  /* 'f' */ { not_a_type },
Allison Karlitskaya's avatar
Allison Karlitskaya committed
121 122 123
  /* 'g' */ { unaligned        },   /* signature string */
  /* 'h' */ { fixed_aligned(4) },   /* file handle (int32) */
  /* 'i' */ { fixed_aligned(4) },   /* int32 */
124 125 126 127
  /* 'j' */ { not_a_type },
  /* 'k' */ { not_a_type },
  /* 'l' */ { not_a_type },
  /* 'm' */ { not_a_type },
Allison Karlitskaya's avatar
Allison Karlitskaya committed
128 129
  /* 'n' */ { fixed_aligned(2) },   /* int16 */
  /* 'o' */ { unaligned        },   /* object path string */
130
  /* 'p' */ { not_a_type },
Allison Karlitskaya's avatar
Allison Karlitskaya committed
131
  /* 'q' */ { fixed_aligned(2) },   /* uint16 */
132
  /* 'r' */ { not_a_type },
Allison Karlitskaya's avatar
Allison Karlitskaya committed
133 134 135 136
  /* 's' */ { unaligned        },   /* string */
  /* 't' */ { fixed_aligned(8) },   /* uint64 */
  /* 'u' */ { fixed_aligned(4) },   /* uint32 */
  /* 'v' */ { aligned(8)       },   /* variant */
137
  /* 'w' */ { not_a_type },
Allison Karlitskaya's avatar
Allison Karlitskaya committed
138 139 140
  /* 'x' */ { fixed_aligned(8) },   /* int64 */
  /* 'y' */ { fixed_aligned(1) },   /* byte */
#undef fixed_aligned
141
#undef not_a_type
Allison Karlitskaya's avatar
Allison Karlitskaya committed
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
#undef unaligned
#undef aligned
};

/* We need to have type strings to return for the base types.  We store
 * those in another array.  Since all base type strings are single
 * characters this is easy.  By not storing pointers to strings into the
 * GVariantTypeInfo itself, we save a bunch of relocations.
 */
static const char g_variant_type_info_basic_chars[24][2] = {
  "b", " ", "d", " ", " ", "g", "h", "i", " ", " ", " ", " ",
  "n", "o", " ", "q", " ", "s", "t", "u", "v", " ", "x", "y"
};

/* sanity checks to make debugging easier */
static void
g_variant_type_info_check (const GVariantTypeInfo *info,
                           char                    container_class)
{
  g_assert (!container_class || info->container_class == container_class);

  /* alignment can only be one of these */
  g_assert (info->alignment == 0 || info->alignment == 1 ||
            info->alignment == 3 || info->alignment == 7);

  if (info->container_class)
    {
      ContainerInfo *container = (ContainerInfo *) info;

      /* extra checks for containers */
      g_assert_cmpint (container->ref_count, >, 0);
      g_assert (container->type_string != NULL);
    }
  else
    {
      gint index;

      /* if not a container, then ensure that it is a valid member of
       * the basic types table
       */
      index = info - g_variant_type_info_basic_table;

      g_assert (G_N_ELEMENTS (g_variant_type_info_basic_table) == 24);
      g_assert (G_N_ELEMENTS (g_variant_type_info_basic_chars) == 24);
      g_assert (0 <= index && index < 24);
      g_assert (g_variant_type_info_basic_chars[index][0] != ' ');
    }
}

/* < private >
 * g_variant_type_info_get_type_string:
 * @info: a #GVariantTypeInfo
 *
 * Gets the type string for @info.  The string is nul-terminated.
 */
const gchar *
g_variant_type_info_get_type_string (GVariantTypeInfo *info)
{
  g_variant_type_info_check (info, 0);

  if (info->container_class)
    {
      ContainerInfo *container = (ContainerInfo *) info;

      /* containers have their type string stored inside them */
      return container->type_string;
    }
  else
    {
      gint index;

      /* look up the type string in the base type array.  the call to
       * g_variant_type_info_check() above already ensured validity.
       */
      index = info - g_variant_type_info_basic_table;

      return g_variant_type_info_basic_chars[index];
    }
}

/* < private >
 * g_variant_type_info_query:
 * @info: a #GVariantTypeInfo
 * @alignment: the location to store the alignment, or %NULL
 * @fixed_size: the location to store the fixed size, or %NULL
 *
 * Queries @info to determine the alignment requirements and fixed size
 * (if any) of the type.
 *
 * @fixed_size, if non-%NULL is set to the fixed size of the type, or 0
 * to indicate that the type is a variable-sized type.  No type has a
 * fixed size of 0.
 *
 * @alignment, if non-%NULL, is set to one less than the required
 * alignment of the type.  For example, for a 32bit integer, @alignment
 * would be set to 3.  This allows you to round an integer up to the
 * proper alignment by performing the following efficient calculation:
 *
 *   offset += ((-offset) & alignment);
 */
void
g_variant_type_info_query (GVariantTypeInfo *info,
                           guint            *alignment,
                           gsize            *fixed_size)
{
  g_variant_type_info_check (info, 0);

  if (alignment)
    *alignment = info->alignment;

  if (fixed_size)
    *fixed_size = info->fixed_size;
}

/* == array == */
257
#define GV_ARRAY_INFO_CLASS 'a'
Allison Karlitskaya's avatar
Allison Karlitskaya committed
258
static ArrayInfo *
259
GV_ARRAY_INFO (GVariantTypeInfo *info)
Allison Karlitskaya's avatar
Allison Karlitskaya committed
260
{
261
  g_variant_type_info_check (info, GV_ARRAY_INFO_CLASS);
Allison Karlitskaya's avatar
Allison Karlitskaya committed
262 263 264 265 266 267 268 269 270

  return (ArrayInfo *) info;
}

static void
array_info_free (GVariantTypeInfo *info)
{
  ArrayInfo *array_info;

271
  g_assert (info->container_class == GV_ARRAY_INFO_CLASS);
Allison Karlitskaya's avatar
Allison Karlitskaya committed
272 273 274 275 276 277 278 279 280 281 282 283
  array_info = (ArrayInfo *) info;

  g_variant_type_info_unref (array_info->element);
  g_slice_free (ArrayInfo, array_info);
}

static ContainerInfo *
array_info_new (const GVariantType *type)
{
  ArrayInfo *info;

  info = g_slice_new (ArrayInfo);
284
  info->container.info.container_class = GV_ARRAY_INFO_CLASS;
Allison Karlitskaya's avatar
Allison Karlitskaya committed
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

  info->element = g_variant_type_info_get (g_variant_type_element (type));
  info->container.info.alignment = info->element->alignment;
  info->container.info.fixed_size = 0;

  return (ContainerInfo *) info;
}

/* < private >
 * g_variant_type_info_element:
 * @info: a #GVariantTypeInfo for an array or maybe type
 *
 * Returns the element type for the array or maybe type.  A reference is
 * not added, so the caller must add their own.
 */
GVariantTypeInfo *
g_variant_type_info_element (GVariantTypeInfo *info)
{
303
  return GV_ARRAY_INFO (info)->element;
Allison Karlitskaya's avatar
Allison Karlitskaya committed
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
}

/* < private >
 * g_variant_type_query_element:
 * @info: a #GVariantTypeInfo for an array or maybe type
 * @alignment: the location to store the alignment, or %NULL
 * @fixed_size: the location to store the fixed size, or %NULL
 *
 * Returns the alignment requires and fixed size (if any) for the
 * element type of the array.  This call is a convenience wrapper around
 * g_variant_type_info_element() and g_variant_type_info_query().
 */
void
g_variant_type_info_query_element (GVariantTypeInfo *info,
                                   guint            *alignment,
                                   gsize            *fixed_size)
{
321
  g_variant_type_info_query (GV_ARRAY_INFO (info)->element,
Allison Karlitskaya's avatar
Allison Karlitskaya committed
322 323 324 325
                             alignment, fixed_size);
}

/* == tuple == */
326
#define GV_TUPLE_INFO_CLASS 'r'
Allison Karlitskaya's avatar
Allison Karlitskaya committed
327
static TupleInfo *
328
GV_TUPLE_INFO (GVariantTypeInfo *info)
Allison Karlitskaya's avatar
Allison Karlitskaya committed
329
{
330
  g_variant_type_info_check (info, GV_TUPLE_INFO_CLASS);
Allison Karlitskaya's avatar
Allison Karlitskaya committed
331 332 333 334 335 336 337 338 339 340

  return (TupleInfo *) info;
}

static void
tuple_info_free (GVariantTypeInfo *info)
{
  TupleInfo *tuple_info;
  gint i;

341
  g_assert (info->container_class == GV_TUPLE_INFO_CLASS);
Allison Karlitskaya's avatar
Allison Karlitskaya committed
342 343 344
  tuple_info = (TupleInfo *) info;

  for (i = 0; i < tuple_info->n_members; i++)
Allison Karlitskaya's avatar
Allison Karlitskaya committed
345
    g_variant_type_info_unref (tuple_info->members[i].type_info);
Allison Karlitskaya's avatar
Allison Karlitskaya committed
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365

  g_slice_free1 (sizeof (GVariantMemberInfo) * tuple_info->n_members,
                 tuple_info->members);
  g_slice_free (TupleInfo, tuple_info);
}

static void
tuple_allocate_members (const GVariantType  *type,
                        GVariantMemberInfo **members,
                        gsize               *n_members)
{
  const GVariantType *item_type;
  gsize i = 0;

  *n_members = g_variant_type_n_items (type);
  *members = g_slice_alloc (sizeof (GVariantMemberInfo) * *n_members);

  item_type = g_variant_type_first (type);
  while (item_type)
    {
Allison Karlitskaya's avatar
Allison Karlitskaya committed
366 367 368
      GVariantMemberInfo *member = &(*members)[i++];

      member->type_info = g_variant_type_info_get (item_type);
Allison Karlitskaya's avatar
Allison Karlitskaya committed
369
      item_type = g_variant_type_next (item_type);
Allison Karlitskaya's avatar
Allison Karlitskaya committed
370

Allison Karlitskaya's avatar
Allison Karlitskaya committed
371
      if (member->type_info->fixed_size)
Allison Karlitskaya's avatar
Allison Karlitskaya committed
372
        member->ending_type = G_VARIANT_MEMBER_ENDING_FIXED;
Allison Karlitskaya's avatar
Allison Karlitskaya committed
373 374
      else if (item_type == NULL)
        member->ending_type = G_VARIANT_MEMBER_ENDING_LAST;
Allison Karlitskaya's avatar
Allison Karlitskaya committed
375 376
      else
        member->ending_type = G_VARIANT_MEMBER_ENDING_OFFSET;
Allison Karlitskaya's avatar
Allison Karlitskaya committed
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
    }

  g_assert (i == *n_members);
}

/* this is g_variant_type_info_query for a given member of the tuple.
 * before the access is done, it is ensured that the item is within
 * range and %FALSE is returned if not.
 */
static gboolean
tuple_get_item (TupleInfo          *info,
                GVariantMemberInfo *item,
                gsize              *d,
                gsize              *e)
{
  if (&info->members[info->n_members] == item)
    return FALSE;

Allison Karlitskaya's avatar
Allison Karlitskaya committed
395 396
  *d = item->type_info->alignment;
  *e = item->type_info->fixed_size;
Allison Karlitskaya's avatar
Allison Karlitskaya committed
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
  return TRUE;
}

/* Read the documentation for #GVariantMemberInfo in gvarianttype.h
 * before attempting to understand this.
 *
 * This function adds one set of "magic constant" values (for one item
 * in the tuple) to the table.
 *
 * The algorithm in tuple_generate_table() calculates values of 'a', 'b'
 * and 'c' for each item, such that the procedure for finding the item
 * is to start at the end of the previous variable-sized item, add 'a',
 * then round up to the nearest multiple of 'b', then then add 'c'.
 * Note that 'b' is stored in the usual "one less than" form.  ie:
 *
 *   start = ROUND_UP(prev_end + a, (b + 1)) + c;
 *
 * We tweak these values a little to allow for a slightly easier
 * computation and more compact storage.
 */
static void
tuple_table_append (GVariantMemberInfo **items,
                    gsize                i,
                    gsize                a,
                    gsize                b,
                    gsize                c)
{
  GVariantMemberInfo *item = (*items)++;

  /* We can shift multiples of the alignment size from 'c' into 'a'.
   * As long as we're shifting whole multiples, it won't affect the
   * result.  This means that we can take the "aligned" portion off of
   * 'c' and add it into 'a'.
   *
   *  Imagine (for sake of clarity) that ROUND_10 rounds up to the
   *  nearest 10.  It is clear that:
   *
   *   ROUND_10(a) + c == ROUND_10(a + 10*(c / 10)) + (c % 10)
   *
   * ie: remove the 10s portion of 'c' and add it onto 'a'.
   *
   * To put some numbers on it, imagine we start with a = 34 and c = 27:
   *
   *  ROUND_10(34) + 27 = 40 + 27 = 67
   *
   * but also, we can split 27 up into 20 and 7 and do this:
   *
   *  ROUND_10(34 + 20) + 7 = ROUND_10(54) + 7 = 60 + 7 = 67
   *                ^^    ^
   * without affecting the result.  We do that here.
   *
   * This reduction in the size of 'c' means that we can store it in a
   * gchar instead of a gsize.  Due to how the structure is packed, this
   * ends up saving us 'two pointer sizes' per item in each tuple when
   * allocating using GSlice.
   */
  a += ~b & c;    /* take the "aligned" part of 'c' and add to 'a' */
  c &= b;         /* chop 'c' to contain only the unaligned part */


  /* Finally, we made one last adjustment.  Recall:
   *
   *   start = ROUND_UP(prev_end + a, (b + 1)) + c;
   *
   * Forgetting the '+ c' for the moment:
   *
   *   ROUND_UP(prev_end + a, (b + 1));
   *
   * we can do a "round up" operation by adding 1 less than the amount
   * to round up to, then rounding down.  ie:
   *
   *   #define ROUND_UP(x, y)    ROUND_DOWN(x + (y-1), y)
   *
   * Of course, for rounding down to a power of two, we can just mask
   * out the appropriate number of low order bits:
   *
   *   #define ROUND_DOWN(x, y)  (x & ~(y - 1))
   *
   * Which gives us
   *
   *   #define ROUND_UP(x, y)    (x + (y - 1) & ~(y - 1))
   *
   * but recall that our alignment value 'b' is already "one less".
   * This means that to round 'prev_end + a' up to 'b' we can just do:
   *
   *   ((prev_end + a) + b) & ~b
   *
   * Associativity, and putting the 'c' back on:
   *
   *   (prev_end + (a + b)) & ~b + c
   *
   * Now, since (a + b) is constant, we can just add 'b' to 'a' now and
   * store that as the number to add to prev_end.  Then we use ~b as the
   * number to take a bitwise 'and' with.  Finally, 'c' is added on.
   *
   * Note, however, that all the low order bits of the 'aligned' value
   * are masked out and that all of the high order bits of 'c' have been
   * "moved" to 'a' (in the previous step).  This means that there are
   * no overlapping bits in the addition -- so we can do a bitwise 'or'
   * equivalently.
   *
   * This means that we can now compute the start address of a given
   * item in the tuple using the algorithm given in the documentation
   * for #GVariantMemberInfo:
   *
   *   item_start = ((prev_end + a) & b) | c;
   */

  item->i = i;
  item->a = a + b;
  item->b = ~b;
  item->c = c;
}

static gsize
tuple_align (gsize offset,
             guint alignment)
{
  return offset + ((-offset) & alignment);
}

/* This function is the heart of the algorithm for calculating 'i', 'a',
 * 'b' and 'c' for each item in the tuple.
 *
 * Imagine we want to find the start of the "i" in the type "(su(qx)ni)".
 * That's a string followed by a uint32, then a tuple containing a
 * uint16 and a int64, then an int16, then our "i".  In order to get to
 * our "i" we:
 *
 * Start at the end of the string, align to 4 (for the uint32), add 4.
 * Align to 8, add 16 (for the tuple).  Align to 2, add 2 (for the
 * int16).  Then we're there.  It turns out that, given 3 simple rules,
 * we can flatten this iteration into one addition, one alignment, then
 * one more addition.
 *
 * The loop below plays through each item in the tuple, querying its
 * alignment and fixed_size into 'd' and 'e', respectively.  At all
 * times the variables 'a', 'b', and 'c' are maintained such that in
 * order to get to the current point, you add 'a', align to 'b' then add
 * 'c'.  'b' is kept in "one less than" form.  For each item, the proper
 * alignment is applied to find the values of 'a', 'b' and 'c' to get to
 * the start of that item.  Those values are recorded into the table.
 * The fixed size of the item (if applicable) is then added on.
 *
 * These 3 rules are how 'a', 'b' and 'c' are modified for alignment and
 * addition of fixed size.  They have been proven correct but are
 * presented here, without proof:
 *
 *  1) in order to "align to 'd'" where 'd' is less than or equal to the
 *     largest level of alignment seen so far ('b'), you align 'c' to
 *     'd'.
 *  2) in order to "align to 'd'" where 'd' is greater than the largest
 *     level of alignment seen so far, you add 'c' aligned to 'b' to the
 *     value of 'a', set 'b' to 'd' (ie: increase the 'largest alignment
 *     seen') and reset 'c' to 0.
 *  3) in order to "add 'e'", just add 'e' to 'c'.
 */
static void
tuple_generate_table (TupleInfo *info)
{
  GVariantMemberInfo *items = info->members;
  gsize i = -1, a = 0, b = 0, c = 0, d, e;

  /* iterate over each item in the tuple.
   *   'd' will be the alignment of the item (in one-less form)
   *   'e' will be the fixed size (or 0 for variable-size items)
   */
  while (tuple_get_item (info, items, &d, &e))
    {
      /* align to 'd' */
      if (d <= b)
        c = tuple_align (c, d);                   /* rule 1 */
      else
        a += tuple_align (c, b), b = d, c = 0;    /* rule 2 */

      /* the start of the item is at this point (ie: right after we
       * have aligned for it).  store this information in the table.
       */
      tuple_table_append (&items, i, a, b, c);

      /* "move past" the item by adding in its size. */
      if (e == 0)
        /* variable size:
         *
         * we'll have an offset stored to mark the end of this item, so
         * just bump the offset index to give us a new starting point
         * and reset all the counters.
         */
        i++, a = b = c = 0;
      else
        /* fixed size */
        c += e;                                   /* rule 3 */
    }
}

static void
tuple_set_base_info (TupleInfo *info)
{
  GVariantTypeInfo *base = &info->container.info;

  if (info->n_members > 0)
    {
      GVariantMemberInfo *m;

      /* the alignment requirement of the tuple is the alignment
       * requirement of its largest item.
       */
      base->alignment = 0;
      for (m = info->members; m < &info->members[info->n_members]; m++)
        /* can find the max of a list of "one less than" powers of two
         * by 'or'ing them
         */
Allison Karlitskaya's avatar
Allison Karlitskaya committed
609
        base->alignment |= m->type_info->alignment;
Allison Karlitskaya's avatar
Allison Karlitskaya committed
610 611 612 613 614 615 616

      m--; /* take 'm' back to the last item */

      /* the structure only has a fixed size if no variable-size
       * offsets are stored and the last item is fixed-sized too (since
       * an offset is never stored for the last item).
       */
Allison Karlitskaya's avatar
Allison Karlitskaya committed
617
      if (m->i == -1 && m->type_info->fixed_size)
Allison Karlitskaya's avatar
Allison Karlitskaya committed
618 619 620 621 622 623 624 625 626
        /* in that case, the fixed size can be found by finding the
         * start of the last item (in the usual way) and adding its
         * fixed size.
         *
         * if a tuple has a fixed size then it is always a multiple of
         * the alignment requirement (to make packing into arrays
         * easier) so we round up to that here.
         */
        base->fixed_size =
Allison Karlitskaya's avatar
Allison Karlitskaya committed
627
          tuple_align (((m->a & m->b) | m->c) + m->type_info->fixed_size,
Allison Karlitskaya's avatar
Allison Karlitskaya committed
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
                       base->alignment);
      else
        /* else, the tuple is not fixed size */
        base->fixed_size = 0;
    }
  else
    {
      /* the empty tuple: '()'.
       *
       * has a size of 1 and an no alignment requirement.
       *
       * It has a size of 1 (not 0) for two practical reasons:
       *
       *  1) So we can determine how many of them are in an array
       *     without dividing by zero or without other tricks.
       *
       *  2) Even if we had some trick to know the number of items in
       *     the array (as GVariant did at one time) this would open a
       *     potential denial of service attack: an attacker could send
       *     you an extremely small array (in terms of number of bytes)
       *     containing trillions of zero-sized items.  If you iterated
       *     over this array you would effectively infinite-loop your
       *     program.  By forcing a size of at least one, we bound the
       *     amount of computation done in response to a message to a
       *     reasonable function of the size of that message.
       */
      base->alignment = 0;
      base->fixed_size = 1;
    }
}

static ContainerInfo *
tuple_info_new (const GVariantType *type)
{
  TupleInfo *info;

  info = g_slice_new (TupleInfo);
665
  info->container.info.container_class = GV_TUPLE_INFO_CLASS;
Allison Karlitskaya's avatar
Allison Karlitskaya committed
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

  tuple_allocate_members (type, &info->members, &info->n_members);
  tuple_generate_table (info);
  tuple_set_base_info (info);

  return (ContainerInfo *) info;
}

/* < private >
 * g_variant_type_info_n_members:
 * @info: a #GVariantTypeInfo for a tuple or dictionary entry type
 *
 * Returns the number of members in a tuple or dictionary entry type.
 * For a dictionary entry this will always be 2.
 */
gsize
g_variant_type_info_n_members (GVariantTypeInfo *info)
{
684
  return GV_TUPLE_INFO (info)->n_members;
Allison Karlitskaya's avatar
Allison Karlitskaya committed
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
}

/* < private >
 * g_variant_type_info_member_info:
 * @info: a #GVariantTypeInfo for a tuple or dictionary entry type
 * @index: the member to fetch information for
 *
 * Returns the #GVariantMemberInfo for a given member.  See
 * documentation for that structure for why you would want this
 * information.
 *
 * @index must refer to a valid child (ie: strictly less than
 * g_variant_type_info_n_members() returns).
 */
const GVariantMemberInfo *
g_variant_type_info_member_info (GVariantTypeInfo *info,
                                 gsize             index)
{
703
  TupleInfo *tuple_info = GV_TUPLE_INFO (info);
Allison Karlitskaya's avatar
Allison Karlitskaya committed
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745

  if (index < tuple_info->n_members)
    return &tuple_info->members[index];

  return NULL;
}

/* == new/ref/unref == */
static GStaticRecMutex g_variant_type_info_lock = G_STATIC_REC_MUTEX_INIT;
static GHashTable *g_variant_type_info_table;

/* < private >
 * g_variant_type_info_get:
 * @type: a #GVariantType
 *
 * Returns a reference to a #GVariantTypeInfo for @type.
 *
 * If an info structure already exists for this type, a new reference is
 * returned.  If not, the required calculations are performed and a new
 * info structure is returned.
 *
 * It is appropriate to call g_variant_type_info_unref() on the return
 * value.
 */
GVariantTypeInfo *
g_variant_type_info_get (const GVariantType *type)
{
  char type_char;

  type_char = g_variant_type_peek_string (type)[0];

  if (type_char == G_VARIANT_TYPE_INFO_CHAR_MAYBE ||
      type_char == G_VARIANT_TYPE_INFO_CHAR_ARRAY ||
      type_char == G_VARIANT_TYPE_INFO_CHAR_TUPLE ||
      type_char == G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY)
    {
      GVariantTypeInfo *info;
      gchar *type_string;

      type_string = g_variant_type_dup_string (type);

      g_static_rec_mutex_lock (&g_variant_type_info_lock);
746 747 748 749

      if (g_variant_type_info_table == NULL)
        g_variant_type_info_table = g_hash_table_new (g_str_hash,
                                                      g_str_equal);
Allison Karlitskaya's avatar
Allison Karlitskaya committed
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
      info = g_hash_table_lookup (g_variant_type_info_table, type_string);

      if (info == NULL)
        {
          ContainerInfo *container;

          if (type_char == G_VARIANT_TYPE_INFO_CHAR_MAYBE ||
              type_char == G_VARIANT_TYPE_INFO_CHAR_ARRAY)
            {
              container = array_info_new (type);
            }
          else /* tuple or dict entry */
            {
              container = tuple_info_new (type);
            }

          info = (GVariantTypeInfo *) container;
          container->type_string = type_string;
          container->ref_count = 1;

          g_hash_table_insert (g_variant_type_info_table, type_string, info);
          type_string = NULL;
        }
      else
        g_variant_type_info_ref (info);

      g_static_rec_mutex_unlock (&g_variant_type_info_lock);
      g_variant_type_info_check (info, 0);
      g_free (type_string);

      return info;
    }
  else
    {
      const GVariantTypeInfo *info;
      int index;

      index = type_char - 'b';
      g_assert (G_N_ELEMENTS (g_variant_type_info_basic_table) == 24);
      g_assert_cmpint (0, <=, index);
      g_assert_cmpint (index, <, 24);

      info = g_variant_type_info_basic_table + index;
      g_variant_type_info_check (info, 0);

      return (GVariantTypeInfo *) info;
    }
}

/* < private >
 * g_variant_type_info_ref:
 * @info: a #GVariantTypeInfo
 *
 * Adds a reference to @info.
 */
GVariantTypeInfo *
g_variant_type_info_ref (GVariantTypeInfo *info)
{
  g_variant_type_info_check (info, 0);

  if (info->container_class)
    {
      ContainerInfo *container = (ContainerInfo *) info;

      g_assert_cmpint (container->ref_count, >, 0);
      g_atomic_int_inc (&container->ref_count);
    }

  return info;
}

/* < private >
 * g_variant_type_info_unref:
 * @info: a #GVariantTypeInfo
 *
 * Releases a reference held on @info.  This may result in @info being
 * freed.
 */
void
g_variant_type_info_unref (GVariantTypeInfo *info)
{
  g_variant_type_info_check (info, 0);

  if (info->container_class)
    {
      ContainerInfo *container = (ContainerInfo *) info;

837
      g_static_rec_mutex_lock (&g_variant_type_info_lock);
Allison Karlitskaya's avatar
Allison Karlitskaya committed
838 839 840 841
      if (g_atomic_int_dec_and_test (&container->ref_count))
        {
          g_hash_table_remove (g_variant_type_info_table,
                               container->type_string);
842 843 844 845 846
          if (g_hash_table_size (g_variant_type_info_table) == 0)
            {
              g_hash_table_unref (g_variant_type_info_table);
              g_variant_type_info_table = NULL;
            }
Allison Karlitskaya's avatar
Allison Karlitskaya committed
847 848 849 850
          g_static_rec_mutex_unlock (&g_variant_type_info_lock);

          g_free (container->type_string);

851
          if (info->container_class == GV_ARRAY_INFO_CLASS)
Allison Karlitskaya's avatar
Allison Karlitskaya committed
852 853
            array_info_free (info);

854
          else if (info->container_class == GV_TUPLE_INFO_CLASS)
Allison Karlitskaya's avatar
Allison Karlitskaya committed
855 856 857 858 859
            tuple_info_free (info);

          else
            g_assert_not_reached ();
        }
860 861
      else
        g_static_rec_mutex_unlock (&g_variant_type_info_lock);
Allison Karlitskaya's avatar
Allison Karlitskaya committed
862 863
    }
}
Allison Karlitskaya's avatar
Allison Karlitskaya committed
864

865 866 867 868 869
void
g_variant_type_info_assert_no_infos (void)
{
  g_assert (g_variant_type_info_table == NULL);
}