gthread-deprecated.c 44.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* GLIB - Library of useful routines for C programming
 * Copyright (C) 1995-1997  Peter Mattis, Spencer Kimball and Josh MacDonald
 *
 * gthread.c: MT safety related functions
 * Copyright 1998 Sebastian Wilhelmi; University of Karlsruhe
 *                Owen Taylor
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 * Boston, MA 02111-1307, USA.
 */

#include "config.h"

26
/* we know we are deprecated here, no need for warnings */
27
#define GLIB_DISABLE_DEPRECATION_WARNINGS
28

29
#include "gmessages.h"
30
#include "gslice.h"
31 32 33 34
#include "gmain.h"
#include "gthread.h"
#include "gthreadprivate.h"
#include "deprecated/gthread.h"
Allison Karlitskaya's avatar
Allison Karlitskaya committed
35
#include "garray.h"
36

37 38
#include "gutils.h"

39 40
/* {{{1 Documentation */

Allison Karlitskaya's avatar
Allison Karlitskaya committed
41 42 43 44 45 46 47 48 49 50 51
/**
 * SECTION:threads-deprecated
 * @title: Deprecated thread API
 * @short_description: old thread APIs (for reference only)
 * @see_also: #GThread
 *
 * These APIs are deprecated.  You should not use them in new code.
 * This section remains only to assist with understanding code that was
 * written to use these APIs at some point in the past.
 **/

52 53 54 55 56 57 58
/**
 * GThreadPriority:
 * @G_THREAD_PRIORITY_LOW: a priority lower than normal
 * @G_THREAD_PRIORITY_NORMAL: the default priority
 * @G_THREAD_PRIORITY_HIGH: a priority higher than normal
 * @G_THREAD_PRIORITY_URGENT: the highest priority
 *
Matthias Clasen's avatar
Matthias Clasen committed
59
 * Deprecated:2.32: Thread priorities no longer have any effect.
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
 */

/**
 * GThreadFunctions:
 * @mutex_new: virtual function pointer for g_mutex_new()
 * @mutex_lock: virtual function pointer for g_mutex_lock()
 * @mutex_trylock: virtual function pointer for g_mutex_trylock()
 * @mutex_unlock: virtual function pointer for g_mutex_unlock()
 * @mutex_free: virtual function pointer for g_mutex_free()
 * @cond_new: virtual function pointer for g_cond_new()
 * @cond_signal: virtual function pointer for g_cond_signal()
 * @cond_broadcast: virtual function pointer for g_cond_broadcast()
 * @cond_wait: virtual function pointer for g_cond_wait()
 * @cond_timed_wait: virtual function pointer for g_cond_timed_wait()
 * @cond_free: virtual function pointer for g_cond_free()
 * @private_new: virtual function pointer for g_private_new()
 * @private_get: virtual function pointer for g_private_get()
 * @private_set: virtual function pointer for g_private_set()
 * @thread_create: virtual function pointer for g_thread_create()
 * @thread_yield: virtual function pointer for g_thread_yield()
 * @thread_join: virtual function pointer for g_thread_join()
 * @thread_exit: virtual function pointer for g_thread_exit()
 * @thread_set_priority: virtual function pointer for
 *                       g_thread_set_priority()
 * @thread_self: virtual function pointer for g_thread_self()
 * @thread_equal: used internally by recursive mutex locks and by some
 *                assertion checks
 *
 * This function table is no longer used by g_thread_init()
 * to initialize the thread system.
 */

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
/**
 * G_THREADS_IMPL_POSIX:
 *
 * This macro is defined if POSIX style threads are used.
 *
 * Deprecated:2.32:POSIX threads are in use on all non-Windows systems.
 *                 Use G_OS_WIN32 to detect Windows.
 */

/**
 * G_THREADS_IMPL_WIN32:
 *
 * This macro is defined if Windows style threads are used.
 *
 * Deprecated:2.32:Use G_OS_WIN32 to detect Windows.
 */


110 111
/* {{{1 Exported Variables */

Allison Karlitskaya's avatar
Allison Karlitskaya committed
112 113 114 115
/* Set this FALSE to have previously-compiled GStaticMutex code use the
 * slow path (ie: call into us) to avoid compatibility problems.
 */
gboolean g_thread_use_default_impl = FALSE;
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149

GThreadFunctions g_thread_functions_for_glib_use =
{
  g_mutex_new,
  g_mutex_lock,
  g_mutex_trylock,
  g_mutex_unlock,
  g_mutex_free,
  g_cond_new,
  g_cond_signal,
  g_cond_broadcast,
  g_cond_wait,
  g_cond_timed_wait,
  g_cond_free,
  g_private_new,
  g_private_get,
  g_private_set,
  NULL,
  g_thread_yield,
  NULL,
  NULL,
  NULL,
  NULL,
  NULL,
};

static guint64
gettime (void)
{
  return g_get_monotonic_time () * 1000;
}

guint64 (*g_thread_gettime) (void) = gettime;

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
/* Initialisation {{{1 ---------------------------------------------------- */
gboolean         g_threads_got_initialized = TRUE;

/**
 * g_thread_init:
 * @vtable: a function table of type #GThreadFunctions, that provides
 *     the entry points to the thread system to be used. Since 2.32,
 *     this parameter is ignored and should always be %NULL
 *
 * If you use GLib from more than one thread, you must initialize the
 * thread system by calling g_thread_init().
 *
 * Since version 2.24, calling g_thread_init() multiple times is allowed,
 * but nothing happens except for the first call.
 *
 * Since version 2.32, GLib does not support custom thread implementations
 * anymore and the @vtable parameter is ignored and you should pass %NULL.
 *
 * <note><para>g_thread_init() must not be called directly or indirectly
 * in a callback from GLib. Also no mutexes may be currently locked while
 * calling g_thread_init().</para></note>
 *
 * <note><para>To use g_thread_init() in your program, you have to link
 * with the libraries that the command <command>pkg-config --libs
 * gthread-2.0</command> outputs. This is not the case for all the
 * other thread-related functions of GLib. Those can be used without
 * having to link with the thread libraries.</para></note>
177 178 179 180
 *
 * Deprecated:2.32: This function is no longer necessary. The GLib
 *     threading system is automatically initialized at the start
 *     of your program.
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
 */

/**
 * g_thread_get_initialized:
 *
 * Indicates if g_thread_init() has been called.
 *
 * Returns: %TRUE if threads have been initialized.
 *
 * Since: 2.20
 */
gboolean
g_thread_get_initialized (void)
{
  return g_thread_supported ();
}

/* We need this for ABI compatibility */
199
void g_thread_init_glib (void);
200 201
void g_thread_init_glib (void) { }

202 203
/* Internal variables {{{1 */

204
static GSList      *g_thread_all_threads = NULL;
205 206 207
static GSList      *g_thread_free_indices = NULL;

/* Protects g_thread_all_threads and g_thread_free_indices */
208
G_LOCK_DEFINE_STATIC (g_static_mutex);
209 210
G_LOCK_DEFINE_STATIC (g_thread);

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
/* Misc. GThread functions {{{1 */

/**
 * g_thread_set_priority:
 * @thread: a #GThread.
 * @priority: ignored
 *
 * This function does nothing.
 *
 * Deprecated:2.32: Thread priorities no longer have any effect.
 */
void
g_thread_set_priority (GThread         *thread,
                       GThreadPriority  priority)
{
}

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
/**
 * g_thread_foreach:
 * @thread_func: function to call for all #GThread structures
 * @user_data: second argument to @thread_func
 *
 * Call @thread_func on all #GThreads that have been
 * created with g_thread_create().
 *
 * Note that threads may decide to exit while @thread_func is
 * running, so without intimate knowledge about the lifetime of
 * foreign threads, @thread_func shouldn't access the GThread*
 * pointer passed in as first argument. However, @thread_func will
 * not be called for threads which are known to have exited already.
 *
 * Due to thread lifetime checks, this function has an execution complexity
 * which is quadratic in the number of existing threads.
 *
 * Since: 2.10
 *
Matthias Clasen's avatar
Matthias Clasen committed
247 248 249
 * Deprecated:2.32: There aren't many things you can do with a #GThread,
 *     except comparing it with one that was returned from g_thread_create().
 *     There are better ways to find out if your thread is still alive.
250 251 252 253 254 255 256 257 258 259
 */
void
g_thread_foreach (GFunc    thread_func,
                  gpointer user_data)
{
  GSList *slist = NULL;
  GRealThread *thread;
  g_return_if_fail (thread_func != NULL);
  /* snapshot the list of threads for iteration */
  G_LOCK (g_thread);
260
  slist = g_slist_copy (g_thread_all_threads);
261 262 263 264 265 266 267 268
  G_UNLOCK (g_thread);
  /* walk the list, skipping non-existent threads */
  while (slist)
    {
      GSList *node = slist;
      slist = node->next;
      /* check whether the current thread still exists */
      G_LOCK (g_thread);
269 270 271 272
      if (g_slist_find (g_thread_all_threads, node->data))
        thread = node->data;
      else
        thread = NULL;
273 274 275 276 277 278 279
      G_UNLOCK (g_thread);
      if (thread)
        thread_func (thread, user_data);
      g_slist_free_1 (node);
    }
}

280 281
static void
g_enumerable_thread_remove (gpointer data)
282
{
283
  GRealThread *thread = data;
284 285

  G_LOCK (g_thread);
286
  g_thread_all_threads = g_slist_remove (g_thread_all_threads, thread);
287 288 289
  G_UNLOCK (g_thread);
}

290 291
GPrivate enumerable_thread_private = G_PRIVATE_INIT (g_enumerable_thread_remove);

292
static void
293 294 295
g_enumerable_thread_add (GRealThread *thread)
{
  G_LOCK (g_thread);
296
  g_thread_all_threads = g_slist_prepend (g_thread_all_threads, thread);
297 298 299 300
  G_UNLOCK (g_thread);

  g_private_set (&enumerable_thread_private, thread);
}
301 302 303 304 305 306 307 308 309 310 311

static gpointer
g_deprecated_thread_proxy (gpointer data)
{
  GRealThread *real = data;

  g_enumerable_thread_add (real);

  return g_thread_proxy (data);
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
/**
 * g_thread_create:
 * @func: a function to execute in the new thread
 * @data: an argument to supply to the new thread
 * @joinable: should this thread be joinable?
 * @error: return location for error, or %NULL
 *
 * This function creates a new thread.
 *
 * The new thread executes the function @func with the argument @data.
 * If the thread was created successfully, it is returned.
 *
 * @error can be %NULL to ignore errors, or non-%NULL to report errors.
 * The error is set, if and only if the function returns %NULL.
 *
327 328 329 330 331
 * This function returns a reference to the created thread only if
 * @joinable is %TRUE.  In that case, you must free this reference by
 * calling g_thread_unref() or g_thread_join().  If @joinable is %FALSE
 * then you should probably not touch the return value.
 *
332 333 334 335 336 337 338 339 340 341
 * Returns: the new #GThread on success
 *
 * Deprecated:2.32: Use g_thread_new() instead
 */
GThread *
g_thread_create (GThreadFunc   func,
                 gpointer      data,
                 gboolean      joinable,
                 GError      **error)
{
342
  return g_thread_create_full (func, data, 0, joinable, 0, 0, error);
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
}

/**
 * g_thread_create_full:
 * @func: a function to execute in the new thread.
 * @data: an argument to supply to the new thread.
 * @stack_size: a stack size for the new thread.
 * @joinable: should this thread be joinable?
 * @bound: ignored
 * @priority: ignored
 * @error: return location for error.
 * @Returns: the new #GThread on success.
 *
 * This function creates a new thread.
 *
 * Deprecated:2.32: The @bound and @priority arguments are now ignored.
Allison Karlitskaya's avatar
Allison Karlitskaya committed
359
 * Use g_thread_new().
360 361 362 363 364 365 366 367 368 369
 */
GThread *
g_thread_create_full (GThreadFunc       func,
                      gpointer          data,
                      gulong            stack_size,
                      gboolean          joinable,
                      gboolean          bound,
                      GThreadPriority   priority,
                      GError          **error)
{
370
  GThread *thread;
371

372 373
  thread = g_thread_new_internal (NULL, g_deprecated_thread_proxy,
                                  func, data, stack_size, error);
374

375 376 377 378 379 380 381 382
  if (!joinable)
    {
      thread->joinable = FALSE;
      g_thread_unref (thread);
    }

  return thread;
}
383

384 385 386 387 388 389 390
/* GOnce {{{1 ------------------------------------------------------------- */
gboolean
g_once_init_enter_impl (volatile gsize *location)
{
  return (g_once_init_enter) (location);
}

391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
/* GStaticMutex {{{1 ------------------------------------------------------ */

/**
 * GStaticMutex:
 *
 * A #GStaticMutex works like a #GMutex.
 *
 * Prior to GLib 2.32, GStaticMutex had the significant advantage
 * that it doesn't need to be created at run-time, but can be defined
 * at compile-time. Since 2.32, #GMutex can be statically allocated
 * as well, and GStaticMutex has been deprecated.
 *
 * Here is a version of our give_me_next_number() example using
 * a GStaticMutex.
 *
 * <example>
 *  <title>
 *   Using <structname>GStaticMutex</structname>
 *   to simplify thread-safe programming
 *  </title>
 *  <programlisting>
 *   int
 *   give_me_next_number (void)
 *   {
 *     static int current_number = 0;
 *     int ret_val;
 *     static GStaticMutex mutex = G_STATIC_MUTEX_INIT;
 *
 *     g_static_mutex_lock (&amp;mutex);
 *     ret_val = current_number = calc_next_number (current_number);
 *     g_static_mutex_unlock (&amp;mutex);
 *
 *     return ret_val;
 *   }
 *  </programlisting>
 * </example>
 *
 * Sometimes you would like to dynamically create a mutex. If you don't
 * want to require prior calling to g_thread_init(), because your code
 * should also be usable in non-threaded programs, you are not able to
 * use g_mutex_new() and thus #GMutex, as that requires a prior call to
 * g_thread_init(). In theses cases you can also use a #GStaticMutex.
 * It must be initialized with g_static_mutex_init() before using it
 * and freed with with g_static_mutex_free() when not needed anymore to
 * free up any allocated resources.
 *
 * Even though #GStaticMutex is not opaque, it should only be used with
 * the following functions, as it is defined differently on different
 * platforms.
 *
 * All of the <function>g_static_mutex_*</function> functions apart
 * from <function>g_static_mutex_get_mutex</function> can also be used
 * even if g_thread_init() has not yet been called. Then they do
 * nothing, apart from <function>g_static_mutex_trylock</function>,
 * which does nothing but returning %TRUE.
 *
 * <note><para>All of the <function>g_static_mutex_*</function>
 * functions are actually macros. Apart from taking their addresses, you
 * can however use them as if they were functions.</para></note>
 **/

/**
 * G_STATIC_MUTEX_INIT:
 *
 * A #GStaticMutex must be initialized with this macro, before it can
 * be used. This macro can used be to initialize a variable, but it
 * cannot be assigned to a variable. In that case you have to use
 * g_static_mutex_init().
 *
 * |[
 * GStaticMutex my_mutex = G_STATIC_MUTEX_INIT;
 * ]|
 **/

/**
 * g_static_mutex_init:
 * @mutex: a #GStaticMutex to be initialized.
 *
 * Initializes @mutex.
 * Alternatively you can initialize it with #G_STATIC_MUTEX_INIT.
 *
 * Deprecated: 2.32: Use g_mutex_init()
 */
void
g_static_mutex_init (GStaticMutex *mutex)
{
  static const GStaticMutex init_mutex = G_STATIC_MUTEX_INIT;

  g_return_if_fail (mutex);

  *mutex = init_mutex;
}

/* IMPLEMENTATION NOTE:
 *
 * On some platforms a GStaticMutex is actually a normal GMutex stored
 * inside of a structure instead of being allocated dynamically.  We can
 * only do this for platforms on which we know, in advance, how to
 * allocate (size) and initialise (value) that memory.
 *
 * On other platforms, a GStaticMutex is nothing more than a pointer to
 * a GMutex.  In that case, the first access we make to the static mutex
 * must first allocate the normal GMutex and store it into the pointer.
 *
 * configure.ac writes macros into glibconfig.h to determine if
 * g_static_mutex_get_mutex() accesses the structure in memory directly
 * (on platforms where we are able to do that) or if it ends up here,
 * where we may have to allocate the GMutex before returning it.
 */

/**
 * g_static_mutex_get_mutex:
 * @mutex: a #GStaticMutex.
 * @Returns: the #GMutex corresponding to @mutex.
 *
 * For some operations (like g_cond_wait()) you must have a #GMutex
 * instead of a #GStaticMutex. This function will return the
 * corresponding #GMutex for @mutex.
 *
 * Deprecated: 2.32: Just use a #GMutex
 */
GMutex *
Allison Karlitskaya's avatar
Allison Karlitskaya committed
513
g_static_mutex_get_mutex_impl (GStaticMutex* mutex)
514 515 516 517 518 519
{
  GMutex *result;

  if (!g_thread_supported ())
    return NULL;

Allison Karlitskaya's avatar
Allison Karlitskaya committed
520
  result = g_atomic_pointer_get (&mutex->mutex);
521 522 523

  if (!result)
    {
524
      G_LOCK (g_static_mutex);
525

Allison Karlitskaya's avatar
Allison Karlitskaya committed
526
      result = mutex->mutex;
527 528 529
      if (!result)
        {
          result = g_mutex_new ();
Allison Karlitskaya's avatar
Allison Karlitskaya committed
530
          g_atomic_pointer_set (&mutex->mutex, result);
531 532
        }

533
      G_UNLOCK (g_static_mutex);
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
    }

  return result;
}

/* IMPLEMENTATION NOTE:
 *
 * g_static_mutex_lock(), g_static_mutex_trylock() and
 * g_static_mutex_unlock() are all preprocessor macros that wrap the
 * corresponding g_mutex_*() function around a call to
 * g_static_mutex_get_mutex().
 */

/**
 * g_static_mutex_lock:
 * @mutex: a #GStaticMutex.
 *
 * Works like g_mutex_lock(), but for a #GStaticMutex.
 *
 * Deprecated: 2.32: Use g_mutex_lock()
 */

/**
 * g_static_mutex_trylock:
 * @mutex: a #GStaticMutex.
 * @Returns: %TRUE, if the #GStaticMutex could be locked.
 *
 * Works like g_mutex_trylock(), but for a #GStaticMutex.
 *
 * Deprecated: 2.32: Use g_mutex_trylock()
 */

/**
 * g_static_mutex_unlock:
 * @mutex: a #GStaticMutex.
 *
 * Works like g_mutex_unlock(), but for a #GStaticMutex.
 *
 * Deprecated: 2.32: Use g_mutex_unlock()
 */

/**
 * g_static_mutex_free:
 * @mutex: a #GStaticMutex to be freed.
 *
 * Releases all resources allocated to @mutex.
 *
 * You don't have to call this functions for a #GStaticMutex with an
 * unbounded lifetime, i.e. objects declared 'static', but if you have
 * a #GStaticMutex as a member of a structure and the structure is
 * freed, you should also free the #GStaticMutex.
 *
 * <note><para>Calling g_static_mutex_free() on a locked mutex may
 * result in undefined behaviour.</para></note>
 *
 * Deprecated: 2.32: Use g_mutex_free()
 */
void
g_static_mutex_free (GStaticMutex* mutex)
{
  GMutex **runtime_mutex;

  g_return_if_fail (mutex);

  /* The runtime_mutex is the first (or only) member of GStaticMutex,
   * see both versions (of glibconfig.h) in configure.ac. Note, that
   * this variable is NULL, if g_thread_init() hasn't been called or
   * if we're using the default thread implementation and it provides
   * static mutexes. */
  runtime_mutex = ((GMutex**)mutex);

  if (*runtime_mutex)
    g_mutex_free (*runtime_mutex);

  *runtime_mutex = NULL;
}

/* {{{1 GStaticRecMutex */

/**
 * GStaticRecMutex:
 *
 * A #GStaticRecMutex works like a #GStaticMutex, but it can be locked
 * multiple times by one thread. If you enter it n times, you have to
 * unlock it n times again to let other threads lock it. An exception
 * is the function g_static_rec_mutex_unlock_full(): that allows you to
 * unlock a #GStaticRecMutex completely returning the depth, (i.e. the
 * number of times this mutex was locked). The depth can later be used
 * to restore the state of the #GStaticRecMutex by calling
 * g_static_rec_mutex_lock_full(). In GLib 2.32, #GStaticRecMutex has
 * been deprecated in favor of #GRecMutex.
 *
 * Even though #GStaticRecMutex is not opaque, it should only be used
 * with the following functions.
 *
 * All of the <function>g_static_rec_mutex_*</function> functions can
 * be used even if g_thread_init() has not been called. Then they do
 * nothing, apart from <function>g_static_rec_mutex_trylock</function>,
 * which does nothing but returning %TRUE.
 **/

/**
 * G_STATIC_REC_MUTEX_INIT:
 *
 * A #GStaticRecMutex must be initialized with this macro before it can
 * be used. This macro can used be to initialize a variable, but it
 * cannot be assigned to a variable. In that case you have to use
 * g_static_rec_mutex_init().
 *
 * |[
 *   GStaticRecMutex my_mutex = G_STATIC_REC_MUTEX_INIT;
 * ]|
 */

/**
 * g_static_rec_mutex_init:
 * @mutex: a #GStaticRecMutex to be initialized.
 *
 * A #GStaticRecMutex must be initialized with this function before it
 * can be used. Alternatively you can initialize it with
 * #G_STATIC_REC_MUTEX_INIT.
 *
 * Deprecated: 2.32: Use g_rec_mutex_init()
 */
void
g_static_rec_mutex_init (GStaticRecMutex *mutex)
{
  static const GStaticRecMutex init_mutex = G_STATIC_REC_MUTEX_INIT;

  g_return_if_fail (mutex);

  *mutex = init_mutex;
}

668
static GRecMutex *
669 670 671 672 673 674 675 676 677 678 679
g_static_rec_mutex_get_rec_mutex_impl (GStaticRecMutex* mutex)
{
  GRecMutex *result;

  if (!g_thread_supported ())
    return NULL;

  result = g_atomic_pointer_get (&mutex->mutex.mutex);

  if (!result)
    {
680
      G_LOCK (g_static_mutex);
681 682 683 684 685 686 687 688 689

      result = (GRecMutex *) mutex->mutex.mutex;
      if (!result)
        {
          result = g_slice_new (GRecMutex);
          g_rec_mutex_init (result);
          g_atomic_pointer_set (&mutex->mutex.mutex, result);
        }

690
      G_UNLOCK (g_static_mutex);
691 692 693 694 695
    }

  return result;
}

696 697 698 699 700 701 702 703 704 705 706 707 708 709
/**
 * g_static_rec_mutex_lock:
 * @mutex: a #GStaticRecMutex to lock.
 *
 * Locks @mutex. If @mutex is already locked by another thread, the
 * current thread will block until @mutex is unlocked by the other
 * thread. If @mutex is already locked by the calling thread, this
 * functions increases the depth of @mutex and returns immediately.
 *
 * Deprecated: 2.32: Use g_rec_mutex_lock()
 */
void
g_static_rec_mutex_lock (GStaticRecMutex* mutex)
{
710 711 712 713
  GRecMutex *rm;
  rm = g_static_rec_mutex_get_rec_mutex_impl (mutex);
  g_rec_mutex_lock (rm);
  mutex->depth++;
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
}

/**
 * g_static_rec_mutex_trylock:
 * @mutex: a #GStaticRecMutex to lock.
 * @Returns: %TRUE, if @mutex could be locked.
 *
 * Tries to lock @mutex. If @mutex is already locked by another thread,
 * it immediately returns %FALSE. Otherwise it locks @mutex and returns
 * %TRUE. If @mutex is already locked by the calling thread, this
 * functions increases the depth of @mutex and immediately returns
 * %TRUE.
 *
 * Deprecated: 2.32: Use g_rec_mutex_trylock()
 */
gboolean
g_static_rec_mutex_trylock (GStaticRecMutex* mutex)
{
732 733
  GRecMutex *rm;
  rm = g_static_rec_mutex_get_rec_mutex_impl (mutex);
734

735
  if (g_rec_mutex_trylock (rm))
736 737 738 739
    {
      mutex->depth++;
      return TRUE;
    }
740
  else
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
    return FALSE;
}

/**
 * g_static_rec_mutex_unlock:
 * @mutex: a #GStaticRecMutex to unlock.
 *
 * Unlocks @mutex. Another thread will be allowed to lock @mutex only
 * when it has been unlocked as many times as it had been locked
 * before. If @mutex is completely unlocked and another thread is
 * blocked in a g_static_rec_mutex_lock() call for @mutex, it will be
 * woken and can lock @mutex itself.
 *
 * Deprecated: 2.32: Use g_rec_mutex_unlock()
 */
void
g_static_rec_mutex_unlock (GStaticRecMutex* mutex)
{
759 760 761 762
  GRecMutex *rm;
  rm = g_static_rec_mutex_get_rec_mutex_impl (mutex);
  mutex->depth--;
  g_rec_mutex_unlock (rm);
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
}

/**
 * g_static_rec_mutex_lock_full:
 * @mutex: a #GStaticRecMutex to lock.
 * @depth: number of times this mutex has to be unlocked to be
 *         completely unlocked.
 *
 * Works like calling g_static_rec_mutex_lock() for @mutex @depth times.
 *
 * Deprecated: 2.32: Use g_rec_mutex_lock()
 */
void
g_static_rec_mutex_lock_full (GStaticRecMutex *mutex,
                              guint            depth)
{
779
  GRecMutex *rm;
780

781 782
  rm = g_static_rec_mutex_get_rec_mutex_impl (mutex);
  while (depth--)
783
    {
784 785
      g_rec_mutex_lock (rm);
      mutex->depth++;
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
    }
}

/**
 * g_static_rec_mutex_unlock_full:
 * @mutex: a #GStaticRecMutex to completely unlock.
 * @Returns: number of times @mutex has been locked by the current
 *           thread.
 *
 * Completely unlocks @mutex. If another thread is blocked in a
 * g_static_rec_mutex_lock() call for @mutex, it will be woken and can
 * lock @mutex itself. This function returns the number of times that
 * @mutex has been locked by the current thread. To restore the state
 * before the call to g_static_rec_mutex_unlock_full() you can call
 * g_static_rec_mutex_lock_full() with the depth returned by this
 * function.
 *
 * Deprecated: 2.32: Use g_rec_mutex_unlock()
 */
guint
g_static_rec_mutex_unlock_full (GStaticRecMutex *mutex)
{
808 809
  GRecMutex *rm;
  gint depth;
810
  gint i;
811

812
  rm = g_static_rec_mutex_get_rec_mutex_impl (mutex);
813 814

  /* all access to mutex->depth done while still holding the lock */
815
  depth = mutex->depth;
816 817 818 819 820
  i = mutex->depth;
  mutex->depth = 0;

  while (i--)
    g_rec_mutex_unlock (rm);
821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842

  return depth;
}

/**
 * g_static_rec_mutex_free:
 * @mutex: a #GStaticRecMutex to be freed.
 *
 * Releases all resources allocated to a #GStaticRecMutex.
 *
 * You don't have to call this functions for a #GStaticRecMutex with an
 * unbounded lifetime, i.e. objects declared 'static', but if you have
 * a #GStaticRecMutex as a member of a structure and the structure is
 * freed, you should also free the #GStaticRecMutex.
 *
 * Deprecated: 2.32: Use g_rec_mutex_clear()
 */
void
g_static_rec_mutex_free (GStaticRecMutex *mutex)
{
  g_return_if_fail (mutex);

843 844 845 846 847 848 849
  if (mutex->mutex.mutex)
    {
      GRecMutex *rm = (GRecMutex *) mutex->mutex.mutex;

      g_rec_mutex_clear (rm);
      g_slice_free (GRecMutex, rm);
    }
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
}

/* GStaticRWLock {{{1 ----------------------------------------------------- */

/**
 * GStaticRWLock:
 *
 * The #GStaticRWLock struct represents a read-write lock. A read-write
 * lock can be used for protecting data that some portions of code only
 * read from, while others also write. In such situations it is
 * desirable that several readers can read at once, whereas of course
 * only one writer may write at a time. Take a look at the following
 * example:
 *
 * <example>
 *  <title>An array with access functions</title>
 *  <programlisting>
 *   GStaticRWLock rwlock = G_STATIC_RW_LOCK_INIT;
 *   GPtrArray *array;
 *
 *   gpointer
 *   my_array_get (guint index)
 *   {
 *     gpointer retval = NULL;
 *
 *     if (!array)
 *       return NULL;
 *
 *     g_static_rw_lock_reader_lock (&amp;rwlock);
 *     if (index &lt; array->len)
 *       retval = g_ptr_array_index (array, index);
 *     g_static_rw_lock_reader_unlock (&amp;rwlock);
 *
 *     return retval;
 *   }
 *
 *   void
 *   my_array_set (guint index, gpointer data)
 *   {
 *     g_static_rw_lock_writer_lock (&amp;rwlock);
 *
 *     if (!array)
 *       array = g_ptr_array_new (<!-- -->);
 *
 *     if (index >= array->len)
 *       g_ptr_array_set_size (array, index+1);
 *     g_ptr_array_index (array, index) = data;
 *
 *     g_static_rw_lock_writer_unlock (&amp;rwlock);
 *   }
 *  </programlisting>
 * </example>
 *
 * This example shows an array which can be accessed by many readers
 * (the <function>my_array_get()</function> function) simultaneously,
 * whereas the writers (the <function>my_array_set()</function>
 * function) will only be allowed once at a time and only if no readers
 * currently access the array. This is because of the potentially
 * dangerous resizing of the array. Using these functions is fully
 * multi-thread safe now.
 *
 * Most of the time, writers should have precedence over readers. That
 * means, for this implementation, that as soon as a writer wants to
 * lock the data, no other reader is allowed to lock the data, whereas,
 * of course, the readers that already have locked the data are allowed
 * to finish their operation. As soon as the last reader unlocks the
 * data, the writer will lock it.
 *
 * Even though #GStaticRWLock is not opaque, it should only be used
 * with the following functions.
 *
 * All of the <function>g_static_rw_lock_*</function> functions can be
 * used even if g_thread_init() has not been called. Then they do
 * nothing, apart from <function>g_static_rw_lock_*_trylock</function>,
 * which does nothing but returning %TRUE.
 *
 * <note><para>A read-write lock has a higher overhead than a mutex. For
 * example, both g_static_rw_lock_reader_lock() and
 * g_static_rw_lock_reader_unlock() have to lock and unlock a
 * #GStaticMutex, so it takes at least twice the time to lock and unlock
 * a #GStaticRWLock that it does to lock and unlock a #GStaticMutex. So
 * only data structures that are accessed by multiple readers, and which
 * keep the lock for a considerable time justify a #GStaticRWLock. The
 * above example most probably would fare better with a
 * #GStaticMutex.</para></note>
 *
 * Deprecated: 2.32: Use a #GRWLock instead
 **/

/**
 * G_STATIC_RW_LOCK_INIT:
 *
 * A #GStaticRWLock must be initialized with this macro before it can
 * be used. This macro can used be to initialize a variable, but it
 * cannot be assigned to a variable. In that case you have to use
 * g_static_rw_lock_init().
 *
 * |[
 *   GStaticRWLock my_lock = G_STATIC_RW_LOCK_INIT;
 * ]|
 */

/**
 * g_static_rw_lock_init:
 * @lock: a #GStaticRWLock to be initialized.
 *
 * A #GStaticRWLock must be initialized with this function before it
 * can be used. Alternatively you can initialize it with
 * #G_STATIC_RW_LOCK_INIT.
 *
 * Deprecated: 2.32: Use g_rw_lock_init() instead
 */
void
g_static_rw_lock_init (GStaticRWLock* lock)
{
  static const GStaticRWLock init_lock = G_STATIC_RW_LOCK_INIT;

  g_return_if_fail (lock);

  *lock = init_lock;
}

inline static void
g_static_rw_lock_wait (GCond** cond, GStaticMutex* mutex)
{
  if (!*cond)
      *cond = g_cond_new ();
  g_cond_wait (*cond, g_static_mutex_get_mutex (mutex));
}

inline static void
g_static_rw_lock_signal (GStaticRWLock* lock)
{
  if (lock->want_to_write && lock->write_cond)
    g_cond_signal (lock->write_cond);
  else if (lock->want_to_read && lock->read_cond)
    g_cond_broadcast (lock->read_cond);
}

/**
 * g_static_rw_lock_reader_lock:
 * @lock: a #GStaticRWLock to lock for reading.
 *
 * Locks @lock for reading. There may be unlimited concurrent locks for
 * reading of a #GStaticRWLock at the same time.  If @lock is already
 * locked for writing by another thread or if another thread is already
 * waiting to lock @lock for writing, this function will block until
 * @lock is unlocked by the other writing thread and no other writing
 * threads want to lock @lock. This lock has to be unlocked by
 * g_static_rw_lock_reader_unlock().
 *
 * #GStaticRWLock is not recursive. It might seem to be possible to
 * recursively lock for reading, but that can result in a deadlock, due
 * to writer preference.
 *
 * Deprecated: 2.32: Use g_rw_lock_reader_lock() instead
 */
void
g_static_rw_lock_reader_lock (GStaticRWLock* lock)
{
  g_return_if_fail (lock);

  if (!g_threads_got_initialized)
    return;

  g_static_mutex_lock (&lock->mutex);
  lock->want_to_read++;
  while (lock->have_writer || lock->want_to_write)
    g_static_rw_lock_wait (&lock->read_cond, &lock->mutex);
  lock->want_to_read--;
  lock->read_counter++;
  g_static_mutex_unlock (&lock->mutex);
}

/**
 * g_static_rw_lock_reader_trylock:
 * @lock: a #GStaticRWLock to lock for reading.
 * @Returns: %TRUE, if @lock could be locked for reading.
 *
 * Tries to lock @lock for reading. If @lock is already locked for
 * writing by another thread or if another thread is already waiting to
 * lock @lock for writing, immediately returns %FALSE. Otherwise locks
 * @lock for reading and returns %TRUE. This lock has to be unlocked by
 * g_static_rw_lock_reader_unlock().
 *
 * Deprectated: 2.32: Use g_rw_lock_reader_trylock() instead
 */
gboolean
g_static_rw_lock_reader_trylock (GStaticRWLock* lock)
{
  gboolean ret_val = FALSE;

  g_return_val_if_fail (lock, FALSE);

  if (!g_threads_got_initialized)
    return TRUE;

  g_static_mutex_lock (&lock->mutex);
  if (!lock->have_writer && !lock->want_to_write)
    {
      lock->read_counter++;
      ret_val = TRUE;
    }
  g_static_mutex_unlock (&lock->mutex);
  return ret_val;
}

/**
 * g_static_rw_lock_reader_unlock:
 * @lock: a #GStaticRWLock to unlock after reading.
 *
 * Unlocks @lock. If a thread waits to lock @lock for writing and all
 * locks for reading have been unlocked, the waiting thread is woken up
 * and can lock @lock for writing.
 *
 * Deprectated: 2.32: Use g_rw_lock_reader_unlock() instead
 */
void
g_static_rw_lock_reader_unlock  (GStaticRWLock* lock)
{
  g_return_if_fail (lock);

  if (!g_threads_got_initialized)
    return;

  g_static_mutex_lock (&lock->mutex);
  lock->read_counter--;
  if (lock->read_counter == 0)
    g_static_rw_lock_signal (lock);
  g_static_mutex_unlock (&lock->mutex);
}

/**
 * g_static_rw_lock_writer_lock:
 * @lock: a #GStaticRWLock to lock for writing.
 *
 * Locks @lock for writing. If @lock is already locked for writing or
 * reading by other threads, this function will block until @lock is
 * completely unlocked and then lock @lock for writing. While this
 * functions waits to lock @lock, no other thread can lock @lock for
 * reading. When @lock is locked for writing, no other thread can lock
 * @lock (neither for reading nor writing). This lock has to be
 * unlocked by g_static_rw_lock_writer_unlock().
 *
 * Deprectated: 2.32: Use g_rw_lock_writer_lock() instead
 */
void
g_static_rw_lock_writer_lock (GStaticRWLock* lock)
{
  g_return_if_fail (lock);

  if (!g_threads_got_initialized)
    return;

  g_static_mutex_lock (&lock->mutex);
  lock->want_to_write++;
  while (lock->have_writer || lock->read_counter)
    g_static_rw_lock_wait (&lock->write_cond, &lock->mutex);
  lock->want_to_write--;
  lock->have_writer = TRUE;
  g_static_mutex_unlock (&lock->mutex);
}

/**
 * g_static_rw_lock_writer_trylock:
 * @lock: a #GStaticRWLock to lock for writing.
 * @Returns: %TRUE, if @lock could be locked for writing.
 *
 * Tries to lock @lock for writing. If @lock is already locked (for
 * either reading or writing) by another thread, it immediately returns
 * %FALSE. Otherwise it locks @lock for writing and returns %TRUE. This
 * lock has to be unlocked by g_static_rw_lock_writer_unlock().
 *
 * Deprectated: 2.32: Use g_rw_lock_writer_trylock() instead
 */
gboolean
g_static_rw_lock_writer_trylock (GStaticRWLock* lock)
{
  gboolean ret_val = FALSE;

  g_return_val_if_fail (lock, FALSE);

  if (!g_threads_got_initialized)
    return TRUE;

  g_static_mutex_lock (&lock->mutex);
  if (!lock->have_writer && !lock->read_counter)
    {
      lock->have_writer = TRUE;
      ret_val = TRUE;
    }
  g_static_mutex_unlock (&lock->mutex);
  return ret_val;
}

/**
 * g_static_rw_lock_writer_unlock:
 * @lock: a #GStaticRWLock to unlock after writing.
 *
 * Unlocks @lock. If a thread is waiting to lock @lock for writing and
 * all locks for reading have been unlocked, the waiting thread is
 * woken up and can lock @lock for writing. If no thread is waiting to
 * lock @lock for writing, and some thread or threads are waiting to
 * lock @lock for reading, the waiting threads are woken up and can
 * lock @lock for reading.
 *
 * Deprectated: 2.32: Use g_rw_lock_writer_unlock() instead
 */
void
g_static_rw_lock_writer_unlock (GStaticRWLock* lock)
{
  g_return_if_fail (lock);

  if (!g_threads_got_initialized)
    return;

  g_static_mutex_lock (&lock->mutex);
  lock->have_writer = FALSE;
  g_static_rw_lock_signal (lock);
  g_static_mutex_unlock (&lock->mutex);
}

/**
 * g_static_rw_lock_free:
 * @lock: a #GStaticRWLock to be freed.
 *
 * Releases all resources allocated to @lock.
 *
 * You don't have to call this functions for a #GStaticRWLock with an
 * unbounded lifetime, i.e. objects declared 'static', but if you have
 * a #GStaticRWLock as a member of a structure, and the structure is
 * freed, you should also free the #GStaticRWLock.
 *
 * Deprecated: 2.32: Use a #GRWLock instead
 */
void
g_static_rw_lock_free (GStaticRWLock* lock)
{
  g_return_if_fail (lock);

  if (lock->read_cond)
    {
      g_cond_free (lock->read_cond);
      lock->read_cond = NULL;
    }
  if (lock->write_cond)
    {
      g_cond_free (lock->write_cond);
      lock->write_cond = NULL;
    }
  g_static_mutex_free (&lock->mutex);
}

1203
/* GPrivate {{{1 ------------------------------------------------------ */
1204

1205 1206 1207 1208
/**
 * g_private_new:
 * @notify: a #GDestroyNotify
 *
Matthias Clasen's avatar
Matthias Clasen committed
1209 1210
 * Creates a new #GPrivate.
 *
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227
 * Deprecated:2.32: dynamic allocation of #GPrivate is a bad idea.  Use
 *                  static storage and G_PRIVATE_INIT() instead.
 *
 * Returns: a newly allocated #GPrivate (which can never be destroyed)
 */
GPrivate *
g_private_new (GDestroyNotify notify)
{
  GPrivate tmp = G_PRIVATE_INIT (notify);
  GPrivate *key;

  key = g_slice_new (GPrivate);
  *key = tmp;

  return key;
}

1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
/* {{{1 GStaticPrivate */

typedef struct _GStaticPrivateNode GStaticPrivateNode;
struct _GStaticPrivateNode
{
  gpointer        data;
  GDestroyNotify  destroy;
  GStaticPrivate *owner;
};

1238
static void
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
g_static_private_cleanup (gpointer data)
{
  GArray *array = data;
  guint i;

  for (i = 0; i < array->len; i++ )
    {
      GStaticPrivateNode *node = &g_array_index (array, GStaticPrivateNode, i);
      if (node->destroy)
        node->destroy (node->data);
    }

  g_array_free (array, TRUE);
}

GPrivate static_private_private = G_PRIVATE_INIT (g_static_private_cleanup);

1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
/**
 * GStaticPrivate:
 *
 * A #GStaticPrivate works almost like a #GPrivate, but it has one
 * significant advantage. It doesn't need to be created at run-time
 * like a #GPrivate, but can be defined at compile-time. This is
 * similar to the difference between #GMutex and #GStaticMutex. Now
 * look at our <function>give_me_next_number()</function> example with
 * #GStaticPrivate:
 *
 * <example>
 *  <title>Using GStaticPrivate for per-thread data</title>
 *  <programlisting>
 *   int
 *   give_me_next_number (<!-- -->)
 *   {
 *     static GStaticPrivate current_number_key = G_STATIC_PRIVATE_INIT;
 *     int *current_number = g_static_private_get (&amp;current_number_key);
 *
 *     if (!current_number)
 *       {
 *         current_number = g_new (int,1);
 *         *current_number = 0;
 *         g_static_private_set (&amp;current_number_key, current_number, g_free);
 *       }
 *
 *     *current_number = calc_next_number (*current_number);
 *
 *     return *current_number;
 *   }
 *  </programlisting>
 * </example>
 */

/**
 * G_STATIC_PRIVATE_INIT:
 *
 * Every #GStaticPrivate must be initialized with this macro, before it
 * can be used.
 *
 * |[
 *   GStaticPrivate my_private = G_STATIC_PRIVATE_INIT;
 * ]|
 */

/**
 * g_static_private_init:
 * @private_key: a #GStaticPrivate to be initialized
 *
 * Initializes @private_key. Alternatively you can initialize it with
 * #G_STATIC_PRIVATE_INIT.
 */
void
g_static_private_init (GStaticPrivate *private_key)
{
  private_key->index = 0;
}

/**
 * g_static_private_get:
 * @private_key: a #GStaticPrivate
 *
 * Works like g_private_get() only for a #GStaticPrivate.
 *
 * This function works even if g_thread_init() has not yet been called.
 *
 * Returns: the corresponding pointer
 */
gpointer
g_static_private_get (GStaticPrivate *private_key)
{
  GArray *array;
  gpointer ret = NULL;
1329 1330

  array = g_private_get (&static_private_private);
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

  if (array && private_key->index != 0 && private_key->index <= array->len)
    {
      GStaticPrivateNode *node;

      node = &g_array_index (array, GStaticPrivateNode, private_key->index - 1);

      /* Deal with the possibility that the GStaticPrivate which used
       * to have this index got freed and the index got allocated to
       * a new one. In this case, the data in the node is stale, so
       * free it and return NULL.
       */
      if (G_UNLIKELY (node->owner != private_key))
        {
          if (node->destroy)
            node->destroy (node->data);
          node->destroy = NULL;
          node->data = NULL;
          node->owner = NULL;
        }
      ret = node->data;
    }

  return ret;
}

/**
 * g_static_private_set:
 * @private_key: a #GStaticPrivate
 * @data: the new pointer
 * @notify: a function to be called with the pointer whenever the
 *     current thread ends or sets this pointer again
 *
 * Sets the pointer keyed to @private_key for the current thread and
 * the function @notify to be called with that pointer (%NULL or
 * non-%NULL), whenever the pointer is set again or whenever the
 * current thread ends.
 *
 * This function works even if g_thread_init() has not yet been called.
 * If g_thread_init() is called later, the @data keyed to @private_key
 * will be inherited only by the main thread, i.e. the one that called
 * g_thread_init().
 *
 * <note><para>@notify is used quite differently from @destructor in
 * g_private_new().</para></note>
 */
void
g_static_private_set (GStaticPrivate *private_key,
                      gpointer        data,
                      GDestroyNotify  notify)
{
  GArray *array;
  static guint next_index = 0;
  GStaticPrivateNode *node;

  if (!private_key->index)
    {
      G_LOCK (g_thread);

      if (!private_key->index)
        {
          if (g_thread_free_indices)
            {
              private_key->index = GPOINTER_TO_UINT (g_thread_free_indices->data);
              g_thread_free_indices = g_slist_delete_link (g_thread_free_indices,
                                                           g_thread_free_indices);
            }
          else
            private_key->index = ++next_index;
        }

      G_UNLOCK (g_thread);
    }

1405
  array = g_private_get (&static_private_private);
1406 1407 1408
  if (!array)
    {
      array = g_array_new (FALSE, TRUE, sizeof (GStaticPrivateNode));
1409
      g_private_set (&static_private_private, array);
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
    }
  if (private_key->index > array->len)
    g_array_set_size (array, private_key->index);

  node = &g_array_index (array, GStaticPrivateNode, private_key->index - 1);

  if (node->destroy)
    node->destroy (node->data);

  node->data = data;
  node->destroy = notify;
  node->owner = private_key;
}

/**
 * g_static_private_free:
 * @private_key: a #GStaticPrivate to be freed
 *
 * Releases all resources allocated to @private_key.
 *
 * You don't have to call this functions for a #GStaticPrivate with an
 * unbounded lifetime, i.e. objects declared 'static', but if you have
 * a #GStaticPrivate as a member of a structure and the structure is
 * freed, you should also free the #GStaticPrivate.
 */
void
g_static_private_free (GStaticPrivate *private_key)
{
  guint idx = private_key->index;

  if (!idx)
    return;

  private_key->index = 0;

  /* Freeing the per-thread data is deferred to either the
   * thread end or the next g_static_private_get() call for
   * the same index.
   */
  G_LOCK (g_thread);
  g_thread_free_indices = g_slist_prepend (g_thread_free_indices,
                                           GUINT_TO_POINTER (idx));
  G_UNLOCK (g_thread);
}

1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
/* GMutex {{{1 ------------------------------------------------------ */

/**
 * g_mutex_new:
 *
 * Allocates and initializes a new #GMutex.
 *
 * Returns: a newly allocated #GMutex. Use g_mutex_free() to free
 *
 * Deprecated:3.32:GMutex can now be statically allocated, or embedded
 * in structures and initialised with g_mutex_init().
 */
GMutex *
g_mutex_new (void)
{
  GMutex *mutex;

  mutex = g_slice_new (GMutex);
  g_mutex_init (mutex);

  return mutex;
}

/**
 * g_mutex_free:
 * @mutex: a #GMutex
 *
 * Destroys a @mutex that has been created with g_mutex_new().
 *
 * Calling g_mutex_free() on a locked mutex may result
 * in undefined behaviour.
 *
 * Deprecated:3.32:GMutex can now be statically allocated, or embedded
 * in structures and initialised with g_mutex_init().
 */
void
g_mutex_free (GMutex *mutex)
{
  g_mutex_clear (mutex);
  g_slice_free (GMutex, mutex);
}

/* GCond {{{1 ------------------------------------------------------ */

/**
 * g_cond_new:
 *
 * Allocates and initializes a new #GCond.
 *
 * Returns: a newly allocated #GCond. Free with g_cond_free()
 *
 * Deprecated:3.32:GCond can now be statically allocated, or embedded
 * in structures and initialised with g_cond_init().
 */
GCond *
g_cond_new (void)
{
  GCond *cond;

  cond = g_slice_new (GCond);
  g_cond_init (cond);

  return cond;
}

/**
 * g_cond_free:
 * @cond: a #GCond
 *
 * Destroys a #GCond that has been created with g_cond_new().
 *
 * Calling g_cond_free() for a #GCond on which threads are
 * blocking leads to undefined behaviour.
 *
 * Deprecated:3.32:GCond can now be statically allocated, or embedded
 * in structures and initialised with g_cond_init().
 */
void
g_cond_free (GCond *cond)
{
  g_cond_clear (cond);
  g_slice_free (GCond, cond);
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566
/**
 * g_cond_timed_wait:
 * @cond: a #GCond
 * @mutex: a #GMutex that is currently locked
 * @abs_time: a #GTimeVal, determining the final time
 *
 * Waits until this thread is woken up on @cond, but not longer than
 * until the time specified by @abs_time. The @mutex is unlocked before
 * falling asleep and locked again before resuming.
 *
 * If @abs_time is %NULL, g_cond_timed_wait() acts like g_cond_wait().
 *
 * This function can be used even if g_thread_init() has not yet been
 * called, and, in that case, will immediately return %TRUE.
 *
 * To easily calculate @abs_time a combination of g_get_current_time()
 * and g_time_val_add() can be used.
 *
 * Returns: %TRUE if @cond was signalled, or %FALSE on timeout
 * Deprecated:2.32: Use g_cond_wait_until() instead.
 */
gboolean
g_cond_timed_wait (GCond    *cond,
                   GMutex   *mutex,
                   GTimeVal *abs_time)
{
  gint64 end_time;

1567 1568 1569 1570 1571 1572
  if (abs_time == NULL)
    {
      g_cond_wait (cond, mutex);
      return TRUE;
    }

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
  end_time = abs_time->tv_sec;
  end_time *= 1000000;
  end_time += abs_time->tv_usec;

#ifdef CLOCK_MONOTONIC
  /* would be nice if we had clock_rtoffset, but that didn't seem to
   * make it into the kernel yet...
   */
  end_time += g_get_monotonic_time () - g_get_real_time ();
#else
  /* if CLOCK_MONOTONIC is not defined then g_get_montonic_time() and
   * g_get_real_time() are returning the same clock, so don't bother...
   */
#endif

  return g_cond_wait_until (cond, mutex, end_time);
}

1591
/* {{{1 Epilogue */
1592
/* vim: set foldmethod=marker: */