Commit 6cd91f1f by Michael Natterer 😴

app: move the handle transform matrix calculation to gimp-transform-utils.[ch]

parent 430c31b7
 ... ... @@ -328,6 +328,193 @@ gimp_transform_matrix_perspective (GimpMatrix3 *matrix, gimp_matrix3_mult (&trafo, matrix); } /* modified gaussian algorithm * solves a system of linear equations * * Example: * 1x + 2y + 4z = 25 * 2x + 1y = 4 * 3x + 5y + 2z = 23 * Solution: x=1, y=2, z=5 * * Input: * matrix = { 1,2,4,25,2,1,0,4,3,5,2,23 } * s = 3 (Number of variables) * Output: * return value == TRUE (TRUE, if there is a single unique solution) * solution == { 1,2,5 } (if the return value is FALSE, the content * of solution is of no use) */ static gboolean mod_gauss (gdouble matrix[], gdouble solution[], gint s) { gint p[s]; /* row permutation */ gint i, j, r, temp; gdouble q; gint t = s + 1; for (i = 0; i < s; i++) { p[i] = i; } for (r = 0; r < s; r++) { /* make sure that (r,r) is not 0 */ if (matrix[p[r] * t + r] == 0.0) { /* we need to permutate rows */ for (i = r + 1; i <= s; i++) { if (i == s) { /* if this happens, the linear system has zero or * more than one solutions. */ return FALSE; } if (matrix[p[i] * t + r] != 0.0) break; } temp = p[r]; p[r] = p[i]; p[i] = temp; } /* make (r,r) == 1 */ q = 1.0 / matrix[p[r] * t + r]; matrix[p[r] * t + r] = 1.0; for (j = r + 1; j < t; j++) { matrix[p[r] * t + j] *= q; } /* make that all entries in column r are 0 (except (r,r)) */ for (i = 0; i < s; i++) { if (i == r) continue; for (j = r + 1; j < t ; j++) { matrix[p[i] * t + j] -= matrix[p[r] * t + j] * matrix[p[i] * t + r]; } /* we don't need to execute the following line * since we won't access this element again: * * matrix[p[i] * t + r] = 0.0; */ } } for (i = 0; i < s; i++) { solution[i] = matrix[p[i] * t + s]; } return TRUE; } void gimp_transform_matrix_handles (GimpMatrix3 *matrix, gdouble x1, gdouble y1, gdouble x2, gdouble y2, gdouble x3, gdouble y3, gdouble x4, gdouble y4, gdouble t_x1, gdouble t_y1, gdouble t_x2, gdouble t_y2, gdouble t_x3, gdouble t_y3, gdouble t_x4, gdouble t_y4) { GimpMatrix3 trafo; gdouble opos_x[4]; gdouble opos_y[4]; gdouble pos_x[4]; gdouble pos_y[4]; gdouble coeff[8 * 9]; gdouble sol[8]; gint i; g_return_if_fail (matrix != NULL); opos_x[0] = x1; opos_y[0] = y1; opos_x[1] = x2; opos_y[1] = y2; opos_x[2] = x3; opos_y[2] = y3; opos_x[3] = x4; opos_y[3] = y4; pos_x[0] = t_x1; pos_y[0] = t_y1; pos_x[1] = t_x2; pos_y[1] = t_y2; pos_x[2] = t_x3; pos_y[2] = t_y3; pos_x[3] = t_x4; pos_y[3] = t_y4; for (i = 0; i < 4; i++) { coeff[i * 9 + 0] = opos_x[i]; coeff[i * 9 + 1] = opos_y[i]; coeff[i * 9 + 2] = 1; coeff[i * 9 + 3] = 0; coeff[i * 9 + 4] = 0; coeff[i * 9 + 5] = 0; coeff[i * 9 + 6] = -opos_x[i] * pos_x[i]; coeff[i * 9 + 7] = -opos_y[i] * pos_x[i]; coeff[i * 9 + 8] = pos_x[i]; coeff[(i + 4) * 9 + 0] = 0; coeff[(i + 4) * 9 + 1] = 0; coeff[(i + 4) * 9 + 2] = 0; coeff[(i + 4) * 9 + 3] = opos_x[i]; coeff[(i + 4) * 9 + 4] = opos_y[i]; coeff[(i + 4) * 9 + 5] = 1; coeff[(i + 4) * 9 + 6] = -opos_x[i] * pos_y[i]; coeff[(i + 4) * 9 + 7] = -opos_y[i] * pos_y[i]; coeff[(i + 4) * 9 + 8] = pos_y[i]; } if (mod_gauss (coeff, sol, 8)) { trafo.coeff[0][0] = sol[0]; trafo.coeff[0][1] = sol[1]; trafo.coeff[0][2] = sol[2]; trafo.coeff[1][0] = sol[3]; trafo.coeff[1][1] = sol[4]; trafo.coeff[1][2] = sol[5]; trafo.coeff[2][0] = sol[6]; trafo.coeff[2][1] = sol[7]; trafo.coeff[2][2] = 1; } else { /* this should not happen reset the matrix so the user sees that * something went wrong */ gimp_matrix3_identity (&trafo); } gimp_matrix3_mult (&trafo, matrix); } gboolean gimp_transform_polygon_is_convex (gdouble x1, gdouble y1, ... ...
 ... ... @@ -85,6 +85,23 @@ void gimp_transform_matrix_perspective (GimpMatrix3 *matrix, gdouble t_y3, gdouble t_x4, gdouble t_y4); void gimp_transform_matrix_handles (GimpMatrix3 *matrix, gdouble x1, gdouble y1, gdouble x2, gdouble y2, gdouble x3, gdouble y3, gdouble x4, gdouble y4, gdouble t_x1, gdouble t_y1, gdouble t_x2, gdouble t_y2, gdouble t_x3, gdouble t_y3, gdouble t_x4, gdouble t_y4); gboolean gimp_transform_polygon_is_convex (gdouble x1, gdouble y1, ... ...
 ... ... @@ -30,6 +30,7 @@ #include "config/gimpguiconfig.h" /* playground */ #include "core/gimp.h" /* playground */ #include "core/gimp-transform-utils.h" #include "widgets/gimphelp-ids.h" #include "widgets/gimpwidgets-utils.h" ... ... @@ -136,9 +137,6 @@ static inline gdouble calc_lineintersect_ratio (gdouble p1x, gdouble q1y, gdouble q2x, gdouble q2y); static gboolean mod_gauss (gdouble matrix[], gdouble solution[], gint s); G_DEFINE_TYPE (GimpHandleTransformTool, gimp_handle_transform_tool, ... ... @@ -609,66 +607,27 @@ gimp_handle_transform_tool_recalc_matrix (GimpTransformTool *tr_tool, GimpToolWidget *widget) { GimpHandleTransformTool *ht_tool = GIMP_HANDLE_TRANSFORM_TOOL (tr_tool); gdouble coeff[8 * 9]; gdouble sol[8]; gdouble opos_x[4]; gdouble opos_y[4]; gdouble pos_x[4]; gdouble pos_y[4]; gint i; if (ht_tool->matrix_recalculation) { for (i = 0; i < 4; i++) { pos_x[i] = tr_tool->trans_info[X0 + i * 2]; pos_y[i] = tr_tool->trans_info[Y0 + i * 2]; opos_x[i] = tr_tool->trans_info[OX0 + i * 2]; opos_y[i] = tr_tool->trans_info[OY0 + i * 2]; } for (i = 0; i < 4; i++) { coeff[i * 9 + 0] = opos_x[i]; coeff[i * 9 + 1] = opos_y[i]; coeff[i * 9 + 2] = 1; coeff[i * 9 + 3] = 0; coeff[i * 9 + 4] = 0; coeff[i * 9 + 5] = 0; coeff[i * 9 + 6] = -opos_x[i] * pos_x[i]; coeff[i * 9 + 7] = -opos_y[i] * pos_x[i]; coeff[i * 9 + 8] = pos_x[i]; coeff[(i + 4) * 9 + 0] = 0; coeff[(i + 4) * 9 + 1] = 0; coeff[(i + 4) * 9 + 2] = 0; coeff[(i + 4) * 9 + 3] = opos_x[i]; coeff[(i + 4) * 9 + 4] = opos_y[i]; coeff[(i + 4) * 9 + 5] = 1; coeff[(i + 4) * 9 + 6] = -opos_x[i] * pos_y[i]; coeff[(i + 4) * 9 + 7] = -opos_y[i] * pos_y[i]; coeff[(i + 4) * 9 + 8] = pos_y[i]; } if (mod_gauss (coeff, sol, 8)) { tr_tool->transform.coeff[0][0] = sol[0]; tr_tool->transform.coeff[0][1] = sol[1]; tr_tool->transform.coeff[0][2] = sol[2]; tr_tool->transform.coeff[1][0] = sol[3]; tr_tool->transform.coeff[1][1] = sol[4]; tr_tool->transform.coeff[1][2] = sol[5]; tr_tool->transform.coeff[2][0] = sol[6]; tr_tool->transform.coeff[2][1] = sol[7]; tr_tool->transform.coeff[2][2] = 1; } else { /* this should not happen reset the matrix so the user sees * that something went wrong */ gimp_matrix3_identity (&tr_tool->transform); } gimp_matrix3_identity (&tr_tool->transform); gimp_transform_matrix_handles (&tr_tool->transform, tr_tool->trans_info[OX0], tr_tool->trans_info[OY0], tr_tool->trans_info[OX1], tr_tool->trans_info[OY1], tr_tool->trans_info[OX2], tr_tool->trans_info[OY2], tr_tool->trans_info[OX3], tr_tool->trans_info[OY3], tr_tool->trans_info[X0], tr_tool->trans_info[Y0], tr_tool->trans_info[X1], tr_tool->trans_info[Y1], tr_tool->trans_info[X2], tr_tool->trans_info[Y2], tr_tool->trans_info[X3], tr_tool->trans_info[Y3]); } } ... ... @@ -928,97 +887,3 @@ calc_lineintersect_ratio (gdouble p1x, gdouble p1y, return u / (u - 1); } /* modified gaussian algorithm * solves a system of linear equations * * Example: * 1x + 2y + 4z = 25 * 2x + 1y = 4 * 3x + 5y + 2z = 23 * Solution: x=1, y=2, z=5 * * Input: * matrix = { 1,2,4,25,2,1,0,4,3,5,2,23 } * s = 3 (Number of variables) * Output: * return value == TRUE (TRUE, if there is a single unique solution) * solution == { 1,2,5 } (if the return value is FALSE, the content * of solution is of no use) */ static gboolean mod_gauss (gdouble matrix[], gdouble solution[], gint s) { gint p[s]; /* row permutation */ gint i, j, r, temp; gdouble q; gint t = s + 1; for (i = 0; i < s; i++) { p[i] = i; } for (r = 0; r < s; r++) { /* make sure that (r,r) is not 0 */ if (matrix[p[r] * t + r] == 0.0) { /* we need to permutate rows */ for (i = r + 1; i <= s; i++) { if (i == s) { /* if this happens, the linear system has zero or * more than one solutions. */ return FALSE; } if (matrix[p[i] * t + r] != 0.0) break; } temp = p[r]; p[r] = p[i]; p[i] = temp; } /* make (r,r) == 1 */ q = 1.0 / matrix[p[r] * t + r]; matrix[p[r] * t + r] = 1.0; for (j = r + 1; j < t; j++) { matrix[p[r] * t + j] *= q; } /* make that all entries in column r are 0 (except (r,r)) */ for (i = 0; i < s; i++) { if (i == r) continue; for (j = r + 1; j < t ; j++) { matrix[p[i] * t + j] -= matrix[p[r] * t + j] * matrix[p[i] * t + r]; } /* we don't need to execute the following line * since we won't access this element again: * * matrix[p[i] * t + r] = 0.0; */ } } for (i = 0; i < s; i++) { solution[i] = matrix[p[i] * t + s]; } return TRUE; }
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!