nlfilt.c 33.8 KB
Newer Older
Elliot Lee's avatar
Elliot Lee committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/**************************************************
 * file: nlfilt/nlfilt.c
 *
 * Copyright (c) 1997 Eric L. Hernes (erich@rrnet.com)
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. The name of the author may not be used to endorse or promote products
 *    derived from this software withough specific prior written permission
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * $Id$
 */

/* add any necessary includes  */

#include <string.h>
Chris Lahey's avatar
Chris Lahey committed
32 33
#include <stdio.h>
#include <stdlib.h>
34
#include <math.h>
Elliot Lee's avatar
Elliot Lee committed
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

#include <libgimp/gimp.h>

#include <gtk/gtk.h>
#include <plug-ins/megawidget/megawidget.h>

static mw_preview_t nlfilt_do_preview;

struct Grgb {
  guint8 red;
  guint8 green;
  guint8 blue;
};

struct GRegion {
  gint32 x;
  gint32 y;
  gint32 width;
  gint32 height;
};

struct piArgs {
  gint32 img;
  gint32 drw;
  gdouble alpha;
  gdouble radius;
  gint filter;
};

typedef enum {
   filter_alpha_trim,
   filter_opt_est,
Adrian Likins's avatar
Adrian Likins committed
67
   filter_edge_enhance
Elliot Lee's avatar
Elliot Lee committed
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
} FilterType;

/* other structure declarations */

static struct mwPreview *thePreview;

/* function protos */

static void query(void);
static void run(char *name, gint nparam, GParam *param,
                gint *nretvals, GParam **retvals);

gint pluginCore(struct piArgs *argp);
gint pluginCoreIA(struct piArgs *argp);

static inline gint nlfiltInit(gdouble alpha, gdouble radius,
                              FilterType filter);
static inline void nlfiltRow(guchar *src, guchar *dst, gint width,
                            gint Bpp, gint filtno);

GPlugInInfo PLUG_IN_INFO = {
  NULL, /* init */
  NULL, /* quit */
  query, /* query */
  run, /* run */
};

MAIN()

static void
query(void){
  static GParamDef args[] = {
    { PARAM_INT32, "run_mode", "Interactive, non-interactive" },
    { PARAM_IMAGE, "img", "The Image to Filter" },
    { PARAM_DRAWABLE, "drw", "The Drawable" },
    { PARAM_FLOAT, "alpha", "The amount of the filter to apply" },
    { PARAM_FLOAT, "radius", "The filter radius" },
    { PARAM_INT32, "filter", "The Filter to Run, 0 - alpha trimmed mean; 1 - optimal estimation (alpha controls noise variance); 2 - edge enhancement" },
  };
  static gint nargs = 6;

  static GParamDef *rets = NULL;
  static gint nrets = 0;

  gimp_install_procedure("plug_in_nlfilt",
                         "Nonlinear swiss army knife filter",
                         "This is the pnmnlfilt, in gimp's clothing.  See the pnmnlfilt manpage for details.",
                         "Graeme W. Gill, gimp 0.99 plugin by Eric L. Hernes",
                         "Graeme W. Gill, Eric L. Hernes",
                         "1997",
Manish Singh's avatar
Manish Singh committed
118
                         "<Image>/Filters/Enhance/NL Filter",
Elliot Lee's avatar
Elliot Lee committed
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
                         "RGB,GRAY",
                         PROC_PLUG_IN,
                         nargs, nrets,
                         args, rets);
}

static void
run(char *name, gint nparam, GParam *param,
    gint *nretvals, GParam **retvals){
  static GParam rvals[1];

  struct piArgs args;

  *nretvals = 1;
  *retvals = rvals;

  memset(&args,(int)0,sizeof(struct piArgs));

  args.radius=-1.0;
  gimp_get_data("plug_in_nlfilt", &args);
139 140
  args.img = param[1].data.d_image;
  args.drw = param[2].data.d_drawable;
Elliot Lee's avatar
Elliot Lee committed
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219

  rvals[0].type = PARAM_STATUS;
  rvals[0].data.d_status = STATUS_SUCCESS;
  switch (param[0].data.d_int32) {
     GDrawable *drw;
    case RUN_INTERACTIVE:
      /* XXX: add code here for interactive running */
      if (args.radius == -1) {
         args.alpha = (gdouble)0.3;
         args.radius = (gdouble)0.3;
         args.filter = 0;
      }
      drw = gimp_drawable_get(args.drw);
      thePreview = mw_preview_build(drw);

      if (pluginCoreIA(&args)==-1) {
        rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
      } else {
         gimp_set_data("plug_in_nlfilt", &args, sizeof(struct piArgs));
      }

    break;

    case RUN_NONINTERACTIVE:
      /* XXX: add code here for non-interactive running */
      if (nparam != 6) {
        rvals[0].data.d_status = STATUS_CALLING_ERROR;
        break;
      }
      args.alpha = param[3].data.d_float;
      args.radius = param[4].data.d_float;
      args.filter = param[5].data.d_int32;

      if (pluginCore(&args)==-1) {
        rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
        break;
      }
    break;

    case RUN_WITH_LAST_VALS:
      /* XXX: add code here for last-values running */
      if (pluginCore(&args)==-1) {
        rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
      }
    break;

  }

}

gint pluginCore(struct piArgs *argp) {
  GDrawable *drw;
  GPixelRgn srcPr, dstPr;
  guchar *srcbuf, *dstbuf;
  guint width, height, Bpp;
  gint filtno, y, rowsize, p_update;

  drw = gimp_drawable_get(argp->drw);

  width = drw->width;
  height = drw->height;
  Bpp = drw->bpp;
  rowsize = width * Bpp;
  p_update = width / 20;

  gimp_pixel_rgn_init (&srcPr, drw, 0, 0, width, height, FALSE, FALSE);
  gimp_pixel_rgn_init (&dstPr, drw, 0, 0, width, height, TRUE, TRUE);

  srcbuf=(guchar*)malloc(width*Bpp*3);
  dstbuf=(guchar*)malloc(width*Bpp);

  memset(srcbuf,(int)0,(size_t)(rowsize*3));
  memset(dstbuf,(int)0,(size_t)rowsize);

  filtno=nlfiltInit(argp->alpha, argp->radius, argp->filter);
  gimp_progress_init("NL Filter");

      /* first row */
  gimp_pixel_rgn_get_rect(&srcPr, srcbuf, 0, 0, width, 3);
Manish Singh's avatar
Manish Singh committed
220
  memcpy(srcbuf, srcbuf+width*Bpp, rowsize);
Elliot Lee's avatar
Elliot Lee committed
221 222 223 224 225
  nlfiltRow(srcbuf, dstbuf, width, Bpp, filtno);
  gimp_pixel_rgn_set_row(&dstPr, dstbuf, 0, 0, width);

      /* last row */
  gimp_pixel_rgn_get_rect(&srcPr, srcbuf, 0, height-3, width, 3);
Manish Singh's avatar
Manish Singh committed
226
  memcpy(srcbuf+rowsize*2, srcbuf+rowsize, rowsize);
Elliot Lee's avatar
Elliot Lee committed
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
  nlfiltRow(srcbuf, dstbuf, width, Bpp, filtno);
  gimp_pixel_rgn_set_row(&dstPr, dstbuf, 0, height-1, width);

  for(y=0 ;y<height-2; y++){
     if (y%p_update==0) gimp_progress_update((gdouble)y/(gdouble)height);
     gimp_pixel_rgn_get_rect(&srcPr, srcbuf, 0, y, width, 3);
     nlfiltRow(srcbuf, dstbuf, width, Bpp, filtno);
     gimp_pixel_rgn_set_row(&dstPr, dstbuf, 0, y, width);
  }

  free(srcbuf);
  free(dstbuf);

  gimp_drawable_flush(drw);
  gimp_drawable_merge_shadow (drw->id, TRUE);
  gimp_drawable_update(drw->id, 0, 0, width, height);
  gimp_displays_flush();
  
  return 0;
}

gint pluginCoreIA(struct piArgs *argp) {
  gint retval=-1; /* default to error return */
  GtkWidget *dlg;
  GtkWidget *frame;
  GtkWidget *hbox;
  GtkWidget *table;
  GtkWidget *preview;
  gint runp;
  struct mwRadioGroup filter[] = {
     { "Alpha Trimmed Mean", 0 },
     { "Optimal Estimation", 0 },
     { "Edge Enhancement", 0 },
     { NULL, 0 }
  };
  gchar **argv;
  gint argc;

  /* Set args */
  argc = 1;
  argv = g_new(gchar *, 1);
  argv[0] = g_strdup("nlfilt");
  gtk_init(&argc, &argv);
  gtk_rc_parse(gimp_gtkrc());
  filter[argp->filter].var = 1;

  dlg = mw_app_new("plug_in_nlfilt", "NL Filter", &runp);

  hbox = gtk_hbox_new(FALSE, 5);
  gtk_container_border_width(GTK_CONTAINER(hbox), 5);
  gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dlg)->vbox), hbox, TRUE, TRUE, 0);
  gtk_widget_show(hbox);

  preview = mw_preview_new(hbox, thePreview, &nlfilt_do_preview);
  gtk_object_set_data(GTK_OBJECT(preview), "piArgs", argp);
  gtk_object_set_data(GTK_OBJECT(preview), "mwRadioGroup", &filter);
  nlfilt_do_preview(preview);

  mw_radio_group_new(hbox, "Filter", filter);

  frame = gtk_frame_new("Parameters");
  gtk_frame_set_shadow_type(GTK_FRAME(frame), GTK_SHADOW_ETCHED_IN);
  gtk_container_border_width(GTK_CONTAINER(frame), 5);
  gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dlg)->vbox), frame, FALSE, FALSE, 0);
  gtk_widget_show(frame);

  table = gtk_table_new(4, 2, FALSE);
  gtk_container_border_width(GTK_CONTAINER (table), 5);
  gtk_container_add(GTK_CONTAINER(frame), table);

  mw_fscale_entry_new(table, "Alpha", 0.0, 1.0, 0.05, 0.1, 0.0,
                      0, 1, 1, 2, &argp->alpha);
  mw_fscale_entry_new(table, "Radius", 0.3333333, 1.0, 0.05, 0.1, 0.0,
                      0, 1, 2, 3, &argp->radius);
  gtk_widget_show(table);

  gtk_widget_show(table);
  gtk_widget_show(dlg);
  gtk_main();
  gdk_flush();

  argp->filter = mw_radio_result(filter);
  
  if(runp){
#if 0
    fprintf(stderr, "running:\n");
    fprintf(stderr, "\t(image %d)\n", argp->img);
    fprintf(stderr, "\t(drawable %d)\n", argp->drw);
    fprintf(stderr, "\t(alpha %f)\n", argp->alpha);
    fprintf(stderr, "\t(radius %f)\n", argp->radius);
#endif
    return pluginCore(argp);
  } else {
    return retval;
  }
}

static void
nlfilt_do_preview(GtkWidget *w) {
   static GtkWidget *theWidget = NULL;
   struct piArgs *ap;
   struct mwRadioGroup *rgp;
   guchar *dst, *c;
   gint y, rowsize, filtno;
  
   if(theWidget==NULL){
      theWidget=w;
   }

   ap = gtk_object_get_data(GTK_OBJECT(theWidget), "piArgs");
   rgp = gtk_object_get_data(GTK_OBJECT(theWidget), "mwRadioGroup");
   ap->filter = mw_radio_result(rgp);

   rowsize=thePreview->width*thePreview->bpp;
   dst = malloc(rowsize);
   c = malloc(rowsize*3);
Manish Singh's avatar
Manish Singh committed
343 344
   memcpy(c, thePreview->bits, rowsize);
   memcpy(c+rowsize, thePreview->bits, rowsize*2);
Elliot Lee's avatar
Elliot Lee committed
345 346 347 348 349
   filtno =  nlfiltInit(ap->alpha, ap->radius, ap->filter);
   nlfiltRow(c, dst, thePreview->width, thePreview->bpp, filtno);
   gtk_preview_draw_row(GTK_PREVIEW(theWidget),
                        dst, 0, 0, thePreview->width);
   
Manish Singh's avatar
Manish Singh committed
350 351 352
   memcpy(c, thePreview->bits+((thePreview->height-2)*rowsize), rowsize*2);
   memcpy(c+(rowsize*2), thePreview->bits+((thePreview->height-1)*rowsize),
          rowsize);
Elliot Lee's avatar
Elliot Lee committed
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
   gtk_preview_draw_row(GTK_PREVIEW(theWidget),
                        dst, 0, thePreview->height-1, thePreview->width);
   free(c);
   for(y=0, c=thePreview->bits;y<thePreview->height-2; y++, c+=rowsize){
      nlfiltRow(c, dst, thePreview->width, thePreview->bpp, filtno);
      gtk_preview_draw_row(GTK_PREVIEW(theWidget),
                           dst, 0, y, thePreview->width);
   }

   gtk_widget_draw(theWidget, NULL);
   gdk_flush();
   free(dst);
}

/* pnmnlfilt.c - 4 in 1 (2 non-linear) filter
**             - smooth an anyimage
**             - do alpha trimmed mean filtering on an anyimage
**             - do optimal estimation smoothing on an anyimage
**             - do edge enhancement on an anyimage
**
** Version 1.0
**
** The implementation of an alpha-trimmed mean filter
** is based on the description in IEEE CG&A May 1990
** Page 23 by Mark E. Lee and Richard A. Redner.
**
** The paper recommends using a hexagon sampling region around each
** pixel being processed, allowing an effective sub pixel radius to be
** specified. The hexagon values are sythesised by area sampling the
** rectangular pixels with a hexagon grid. The seven hexagon values
** obtained from the 3x3 pixel grid are used to compute the alpha
** trimmed mean. Note that an alpha value of 0.0 gives a conventional
** mean filter (where the radius controls the contribution of
** surrounding pixels), while a value of 0.5 gives a median filter.
** Although there are only seven values to trim from before finding
** the mean, the algorithm has been extended from that described in
** CG&A by using interpolation, to allow a continuous selection of
** alpha value between and including 0.0 to 0.5  The useful values
** for radius are between 0.3333333 (where the filter will have no
** effect because only one pixel is sampled), to 1.0, where all
** pixels in the 3x3 grid are sampled.
**
** The optimal estimation filter is taken from an article "Converting Dithered
** Images Back to Gray Scale" by Allen Stenger, Dr Dobb's Journal, November
** 1992, and this article references "Digital Image Enhancement andNoise Filtering by
** Use of Local Statistics", Jong-Sen Lee, IEEE Transactions on Pattern Analysis and
** Machine Intelligence, March 1980.
**
** Also borrow the  technique used in pgmenhance(1) to allow edge
** enhancement if the alpha value is negative.
**
** Author:
**         Graeme W. Gill, 30th Jan 1993
**         graeme@labtam.oz.au
**
** Permission to use, copy, modify, and distribute this software and its
** documentation for any purpose and without fee is hereby granted, provided
** that the above copyright notice appear in all copies and that both that
** copyright notice and this permission notice appear in supporting
** documentation.  This software is provided "as is" without express or
** implied warranty.
*/

/* ************************************************** */
/* Hexagon intersecting square area functions */
/* Compute the area of the intersection of a triangle */
/* and a rectangle */

gdouble triang_area(gdouble, gdouble, gdouble, gdouble, gdouble,
                   gdouble, gdouble, gdouble, gint);
gdouble rectang_area(gdouble, gdouble, gdouble, gdouble,
                    gdouble, gdouble, gdouble, gdouble);
gdouble hex_area(gdouble, gdouble, gdouble, gdouble, gdouble);

gint atfilt0(gint *p);
gint atfilt1(gint *p);
gint atfilt2(gint *p);
gint atfilt3(gint *p);
gint atfilt4(gint *p);
gint atfilt5(gint *p);
gint (*atfuncs[6])(gint *) = {
  atfilt0,
  atfilt1,
  atfilt2,
  atfilt3,
  atfilt4,
  atfilt5
};

gint noisevariance;      /* global so that pixel processing code can get at it quickly */

#define MXIVAL 255    /* maximum input value */
#define NOIVAL (MXIVAL + 1)             /* number of possible input values */

#define SCALEB 8                                /* scale bits */
#define SCALE (1 << SCALEB)     /* scale factor */
#define MXSVAL (MXIVAL * SCALE) /* maximum scaled values */

#define CSCALEB 2                               /* coarse scale bits */
#define CSCALE (1 << CSCALEB)   /* coarse scale factor */
#define MXCSVAL (MXIVAL * CSCALE)       /* maximum coarse scaled values */
#define NOCSVAL (MXCSVAL + 1)   /* number of coarse scaled values */
#define SCTOCSC(x) ((x) >> (SCALEB - CSCALEB))  /* convert from scaled to coarse scaled */
#define CSCTOSC(x) ((x) << (SCALEB - CSCALEB))  /* convert from course scaled to scaled */

#ifndef MAXINT
# define MAXINT 0x7fffffff      /* assume this is a 32 bit machine */
#endif

/* round and scale floating point to scaled integer */
#define ROUND(x) ((gint)(((x) * (gdouble)SCALE) + 0.5))
/* round and un-scale scaled integer value */
#define RUNSCALE(x) (((x) + (1 << (SCALEB-1))) >> SCALEB)       /* rounded un-scale */
#define UNSCALE(x) ((x) >> SCALEB)

468
static void
Elliot Lee's avatar
Elliot Lee committed
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
nlfiltRow(guchar *src, guchar *dst, gint width, gint Bpp, gint filtno) {
   gint x, po, no;
   gint pf[9];
   guchar *r0, *r1, *r2;
   guchar *ip0, *ip1, *ip2, *or;

   r0=src;
   r1=src+(width*Bpp);
   r2=src+(width*Bpp*2);
   or=dst;
   for (x=(width-1)*Bpp, ip0=r0, ip1=r1, ip2=r2, po=x>0?1:0, no=0;
        x>0;
        x--, ip0++, ip1++, ip2++, or++, po=(x!=0), no|=1) {
      pf[0] = *ip1;
      pf[1] = *(ip1-no);
      pf[2] = *(ip2-no);
      pf[3] = *(ip2);
      pf[4] = *(ip2+po);
      pf[5] = *(ip1+po);
      pf[6] = *(ip0+po);
      pf[7] = *(ip0);
      pf[8] = *(ip0-no);
      *or=(atfuncs[filtno])(pf);
   }
}

/* We restrict radius to the values: 0.333333 <= radius <= 1.0 */
/* so that no fewer and no more than a 3x3 grid of pixels around */
/* the pixel in question needs to be read. Given this, we only */
/* need 3 or 4 weightings per hexagon, as follows: */
/*                  _ _                         */
/* Virtical hex:   |_|_|  1 2                   */
/*                 |X|_|  0 3                   */
/*                                       _      */
/*              _                      _|_|   1 */
/* Middle hex: |_| 1  Horizontal hex: |X|_| 0 2 */
/*             |X| 0                    |_|   3 */
/*             |_| 2                            */

/* all filters */
gint V0[NOIVAL],V1[NOIVAL],V2[NOIVAL],V3[NOIVAL];   /* vertical hex */
gint M0[NOIVAL],M1[NOIVAL],M2[NOIVAL];              /* middle hex */
gint H0[NOIVAL],H1[NOIVAL],H2[NOIVAL],H3[NOIVAL];   /* horizontal hex */

/* alpha trimmed and edge enhancement only */
gint ALFRAC[NOIVAL * 8];               /* fractional alpha divider table */

/* optimal estimation only */
gint AVEDIV[7 * NOCSVAL];              /* divide by 7 to give average value */
gint SQUARE[2 * NOCSVAL];              /* scaled square lookup table */

/* Table initialisation function - return alpha range */
521
static inline gint
Elliot Lee's avatar
Elliot Lee committed
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
nlfiltInit(gdouble alpha, gdouble radius, FilterType filter) {
   gint alpharange;                 /* alpha range value 0 - 3 */
   gdouble meanscale;               /* scale for finding mean */
   gdouble mmeanscale;              /* scale for finding mean - midle hex */
   gdouble alphafraction;   /* fraction of next largest/smallest
                             *  to subtract from sum
                             */
   switch (filter) {
       case filter_alpha_trim: {
          gdouble noinmean;
              /* number of elements (out of a possible 7) used in the mean */
          noinmean = ((0.5 - alpha) * 12.0) + 1.0;
          mmeanscale = meanscale = 1.0/noinmean;
          if (alpha == 0.0) {                    /* mean filter */
             alpharange = 0;
             alphafraction = 0.0;            /* not used */
          } else if (alpha < (1.0/6.0)) {    /* mean of 5 to 7 middle values */
             alpharange = 1;
             alphafraction = (7.0 - noinmean)/2.0;
          } else if (alpha < (1.0/3.0)) {    /* mean of 3 to 5 middle values */
             alpharange = 2;
             alphafraction = (5.0 - noinmean)/2.0;
          } else {                           /* mean of 1 to 3 middle values */
                                             /* alpha==0.5  => median filter */
             alpharange = 3;
             alphafraction = (3.0 - noinmean)/2.0;
          }
       }
       break;
       case filter_opt_est: {
          gint i;
          gdouble noinmean = 7.0;

              /* edge enhancement function */
          alpharange = 5;

              /* compute scaled hex values */
          mmeanscale=meanscale=1.0;

              /* Set up 1:1 division lookup - not used */
          alphafraction=1.0/noinmean;

              /* estimate of noise variance */
          noisevariance = alpha * (gdouble)255;
          noisevariance = noisevariance * noisevariance / 8.0;

              /* set yp optimal estimation specific stuff */

          for (i=0;i<(7*NOCSVAL);i++) { /* divide scaled value by 7 lookup */
             AVEDIV[i] = CSCTOSC(i)/7;       /* scaled divide by 7 */
          }
              /* compute square and rescale by
               * (val >> (2 * SCALEB + 2)) table
               */
          for (i=0;i<(2*NOCSVAL);i++) {
             gint val;
                 /* NOCSVAL offset to cope with -ve input values */
             val = CSCTOSC(i - NOCSVAL);
             SQUARE[i] = (val * val) >> (2 * SCALEB + 2);
          }
       }
       break;
       case filter_edge_enhance: {
          if (alpha == 1.0) alpha = 0.99;
          alpharange = 4;
              /* mean of 7 and scaled by -alpha/(1-alpha) */
          meanscale = 1.0 * (-alpha/((1.0 - alpha) * 7.0));

              /* middle pixel has 1/(1-alpha) as well */
          mmeanscale = 1.0 * (1.0/(1.0 - alpha) + meanscale);
          alphafraction = 0.0;    /* not used */
       }
       break;
       default:
          fprintf(stderr, "unknown filter %d\n", filter);
          return -1;
   }
       /*
        * Setup pixel weighting tables -
        * note we pre-compute mean division here too.
        */
   {
      gint i;
      gdouble hexhoff,hexvoff;
      gdouble tabscale,mtabscale;
      gdouble v0,v1,v2,v3,m0,m1,m2,h0,h1,h2,h3;

          /* horizontal offset of virtical hex centers */
      hexhoff = radius/2;

          /* vertical offset of virtical hex centers */
      hexvoff = 3.0 * radius/sqrt(12.0);

          /*
           * scale tables to normalise by hexagon
           * area, and number of hexes used in mean
           */
      tabscale = meanscale / (radius * hexvoff);
      mtabscale = mmeanscale / (radius * hexvoff);
      v0 = hex_area(0.0,0.0,hexhoff,hexvoff,radius) * tabscale;
      v1 = hex_area(0.0,1.0,hexhoff,hexvoff,radius) * tabscale;
      v2 = hex_area(1.0,1.0,hexhoff,hexvoff,radius) * tabscale;
      v3 = hex_area(1.0,0.0,hexhoff,hexvoff,radius) * tabscale;
      m0 = hex_area(0.0,0.0,0.0,0.0,radius) * mtabscale;
      m1 = hex_area(0.0,1.0,0.0,0.0,radius) * mtabscale;
      m2 = hex_area(0.0,-1.0,0.0,0.0,radius) * mtabscale;
      h0 = hex_area(0.0,0.0,radius,0.0,radius) * tabscale;
      h1 = hex_area(1.0,1.0,radius,0.0,radius) * tabscale;
      h2 = hex_area(1.0,0.0,radius,0.0,radius) * tabscale;
      h3 = hex_area(1.0,-1.0,radius,0.0,radius) * tabscale;

      for (i=0; i <= MXIVAL; i++) {
         gdouble fi;
         fi = (gdouble)i;
         V0[i] = ROUND(fi * v0);
         V1[i] = ROUND(fi * v1);
         V2[i] = ROUND(fi * v2);
         V3[i] = ROUND(fi * v3);
         M0[i] = ROUND(fi * m0);
         M1[i] = ROUND(fi * m1);
         M2[i] = ROUND(fi * m2);
         H0[i] = ROUND(fi * h0);
         H1[i] = ROUND(fi * h1);
         H2[i] = ROUND(fi * h2);
         H3[i] = ROUND(fi * h3);
      }
          /* set up alpha fraction lookup table used on big/small */
      for (i=0; i < (NOIVAL * 8); i++) {
         ALFRAC[i] = ROUND((gdouble)i * alphafraction);
      }
   }
   return alpharange;
}

/* Core pixel processing function - hand it 3x3 pixels and return result. */
/* Mean filter */
gint
atfilt0(gint32 *p) {
   gint retv;
       /* map to scaled hexagon values */
   retv = M0[p[0]] + M1[p[3]] + M2[p[7]];
   retv += H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
   retv += V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
   retv += V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
   retv += H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
   retv += V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
   retv += V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
   return UNSCALE(retv);
}

/* Mean of 5 - 7 middle values */
gint
atfilt1(gint32 *p) {
   gint h0,h1,h2,h3,h4,h5,h6;       /* hexagon values    2 3   */
                                    /*                  1 0 4  */
                                    /*                   6 5   */
   gint big,small;
       /* map to scaled hexagon values */
   h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
   h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
   h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
   h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
   h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
   h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
   h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
       /* sum values and also discover the largest and smallest */
   big = small = h0;
#define CHECK(xx) \
        h0 += xx; \
        if (xx > big) \
                big = xx; \
        else if (xx < small) \
                small = xx;
        CHECK(h1)
        CHECK(h2)
        CHECK(h3)
        CHECK(h4)
        CHECK(h5)
        CHECK(h6)
#undef CHECK
       /* Compute mean of middle 5-7 values */
   return UNSCALE(h0 -ALFRAC[(big + small)>>SCALEB]);
}

/* Mean of 3 - 5 middle values */
gint
atfilt2(gint32 *p) {
   gint h0,h1,h2,h3,h4,h5,h6;       /* hexagon values    2 3   */
                                    /*                  1 0 4  */
                                    /*                   6 5   */
   gint big0,big1,small0,small1;
       /* map to scaled hexagon values */
   h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
   h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
   h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
   h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
   h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
   h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
   h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
       /* sum values and also discover the 2 largest and 2 smallest */
   big0 = small0 = h0;
   small1 = MAXINT;
   big1 = 0;
#define CHECK(xx) \
        h0 += xx; \
        if (xx > big1) \
                { \
                if (xx > big0) \
                        { \
                        big1 = big0; \
                        big0 = xx; \
                        } \
                else \
                        big1 = xx; \
                } \
        if (xx < small1) \
                { \
                if (xx < small0) \
                        { \
                        small1 = small0; \
                        small0 = xx; \
                        } \
                else \
                        small1 = xx; \
                }
        CHECK(h1)
        CHECK(h2)
        CHECK(h3)
        CHECK(h4)
        CHECK(h5)
        CHECK(h6)
#undef CHECK
       /* Compute mean of middle 3-5 values */
  return UNSCALE(h0 -big0 -small0 -ALFRAC[(big1 + small1)>>SCALEB]);
}

/*
 * Mean of 1 - 3 middle values.
 * If only 1 value, then this is a median filter.
 */
gint32
atfilt3(gint32 *p) {
   gint h0,h1,h2,h3,h4,h5,h6;       /* hexagon values    2 3   */
                                   /*                  1 0 4  */
                                   /*                   6 5   */
   gint big0,big1,big2,small0,small1,small2;
       /* map to scaled hexagon values */
   h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
   h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
   h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
   h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
   h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
   h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
   h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
       /* sum values and also discover the 3 largest and 3 smallest */
   big0 = small0 = h0;
   small1 = small2 = MAXINT;
   big1 = big2 = 0;
#define CHECK(xx) \
        h0 += xx; \
        if (xx > big2) \
                { \
                if (xx > big1) \
                        { \
                        if (xx > big0) \
                                { \
                                big2 = big1; \
                                big1 = big0; \
                                big0 = xx; \
                                } \
                        else \
                                { \
                                big2 = big1; \
                                big1 = xx; \
                                } \
                        } \
                else \
                        big2 = xx; \
                } \
        if (xx < small2) \
                { \
                if (xx < small1) \
                        { \
                        if (xx < small0) \
                                { \
                                small2 = small1; \
                                small1 = small0; \
                                small0 = xx; \
                                } \
                        else \
                                { \
                                small2 = small1; \
                                small1 = xx; \
                                } \
                        } \
                else \
                        small2 = xx; \
                }
        CHECK(h1)
        CHECK(h2)
        CHECK(h3)
        CHECK(h4)
        CHECK(h5)
        CHECK(h6)
#undef CHECK
       /* Compute mean of middle 1-3 values */
   return  UNSCALE(h0-big0-big1-small0-small1-ALFRAC[(big2+small2)>>SCALEB]);
}

/* Edge enhancement */
gint
atfilt4(gint *p) {
   gint hav;
       /* map to scaled hexagon values and compute enhance value */
   hav = M0[p[0]] + M1[p[3]] + M2[p[7]];
   hav += H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
   hav += V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
   hav += V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
   hav += H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
   hav += V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
   hav += V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
   if (hav < 0)
      hav = 0;
   hav = UNSCALE(hav);
   if (hav > (gdouble)255)
      hav = (gdouble)255;
   return hav;
}

/* Optimal estimation - do smoothing in inverse proportion */
/* to the local variance. */
/* notice we use the globals noisevariance */
gint
atfilt5(gint *p) {
   gint mean,variance,temp;
   gint h0,h1,h2,h3,h4,h5,h6;       /* hexagon values    2 3   */
                                   /*                  1 0 4  */
                                   /*                   6 5   */
       /* map to scaled hexagon values */
   h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
   h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
   h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
   h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
   h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
   h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
   h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
   mean = h0 + h1 + h2 + h3 + h4 + h5 + h6;
       /* compute scaled mean by dividing by 7 */
   mean = AVEDIV[SCTOCSC(mean)];

       /* compute scaled variance */
   temp = (h1 - mean); variance = SQUARE[NOCSVAL + SCTOCSC(temp)];

       /* and rescale to keep */
   temp = (h2 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];

 /* within 32 bit limits */
   temp = (h3 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
   temp = (h4 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
   temp = (h5 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
   temp = (h6 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
       /* (temp = h0 - mean) */
   temp = (h0 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
   if (variance != 0)      /* avoid possible divide by 0 */
          /* optimal estimate */
      temp = mean + (variance * temp) / (variance + noisevariance);
   else temp = h0;
   if (temp < 0)
      temp = 0;
   temp = RUNSCALE(temp);
   if (temp > (gdouble)255) temp = (gdouble)255;
   return temp;
}


/* Triangle orientation is per geometric axes (not graphical axies) */

#define NW 0    /* North west triangle /| */
#define NE 1    /* North east triangle |\ */
#define SW 2    /* South west triangle \| */
#define SE 3    /* South east triangle |/ */
#define STH 2
#define EST 1

#define SWAPI(a,b) (t = a, a = -b, b = -t)

/* compute the area of overlap of a hexagon diameter d, */
/* centered at hx,hy, with a unit square of center sx,sy. */
gdouble
hex_area(gdouble sx, gdouble sy, gdouble hx, gdouble hy, gdouble d) {
   gdouble hx0,hx1,hx2,hy0,hy1,hy2,hy3;
   gdouble sx0,sx1,sy0,sy1;

       /* compute square co-ordinates */
   sx0 = sx - 0.5;
   sy0 = sy - 0.5;
   sx1 = sx + 0.5;
   sy1 = sy + 0.5;
       /* compute hexagon co-ordinates */
   hx0 = hx - d/2.0;
   hx1 = hx;
   hx2 = hx + d/2.0;
   hy0 = hy - 0.5773502692 * d;    /* d / sqrt(3) */
   hy1 = hy - 0.2886751346 * d;    /* d / sqrt(12) */
   hy2 = hy + 0.2886751346 * d;    /* d / sqrt(12) */
   hy3 = hy + 0.5773502692 * d;    /* d / sqrt(3) */

   return
      triang_area(sx0,sy0,sx1,sy1,hx0,hy2,hx1,hy3,NW) +
      triang_area(sx0,sy0,sx1,sy1,hx1,hy2,hx2,hy3,NE) +
      rectang_area(sx0,sy0,sx1,sy1,hx0,hy1,hx2,hy2) +
      triang_area(sx0,sy0,sx1,sy1,hx0,hy0,hx1,hy1,SW) +
      triang_area(sx0,sy0,sx1,sy1,hx1,hy0,hx2,hy1,SE);
}

gdouble
triang_area(gdouble rx0, gdouble ry0, gdouble rx1, gdouble ry1, gdouble tx0,
            gdouble ty0, gdouble tx1, gdouble ty1, gint tt) {
   gdouble a,b,c,d;
   gdouble lx0,ly0,lx1,ly1;
       /* Convert everything to a NW triangle */
   if (tt & STH) {
      gdouble t;
      SWAPI(ry0,ry1);
      SWAPI(ty0,ty1);
   } if (tt & EST) {
      gdouble t;
      SWAPI(rx0,rx1);
      SWAPI(tx0,tx1);
   }
       /* Compute overlapping box */
   if (tx0 > rx0)
      rx0 = tx0;
   if (ty0 > ry0)
      ry0 = ty0;
   if (tx1 < rx1)
      rx1 = tx1;
   if (ty1 < ry1)
      ry1 = ty1;
   if (rx1 <= rx0 || ry1 <= ry0)
      return 0.0;
       /* Need to compute diagonal line intersection with the box */
       /* First compute co-efficients to formulas x = a + by and y = c + dx */
   b = (tx1 - tx0)/(ty1 - ty0);
   a = tx0 - b * ty0;
   d = (ty1 - ty0)/(tx1 - tx0);
   c = ty0 - d * tx0;

       /* compute top or right intersection */
   tt = 0;
   ly1 = ry1;
   lx1 = a + b * ly1;
   if (lx1 <= rx0)
      return (rx1 - rx0) * (ry1 - ry0);
   else if (lx1 > rx1) {     /* could be right hand side */
      lx1 = rx1;
      ly1 = c + d * lx1;
      if (ly1 <= ry0)
         return (rx1 - rx0) * (ry1 - ry0);
      tt = 1; /* right hand side intersection */
   }
       /* compute left or bottom intersection */
   lx0 = rx0;
   ly0 = c + d * lx0;
   if (ly0 >= ry1)
      return (rx1 - rx0) * (ry1 - ry0);
   else if (ly0 < ry0) {    /* could be right hand side */
      ly0 = ry0;
      lx0 = a + b * ly0;
      if (lx0 >= rx1)
         return (rx1 - rx0) * (ry1 - ry0);
      tt |= 2;        /* bottom intersection */
   }

   if (tt == 0) {    /* top and left intersection */
                       /* rectangle minus triangle */
      return ((rx1 - rx0) * (ry1 - ry0))
         - (0.5 * (lx1 - rx0) * (ry1 - ly0));
   }
   else if (tt == 1) {       /* right and left intersection */
      return ((rx1 - rx0) * (ly0 - ry0))
         + (0.5 * (rx1 - rx0) * (ly1 - ly0));
   } else if (tt == 2) {      /* top and bottom intersection */
      return ((rx1 - lx1) * (ry1 - ry0))
         + (0.5 * (lx1 - lx0) * (ry1 - ry0));
   } else { /* tt == 3 */      /* right and bottom intersection */
          /* triangle */
      return (0.5 * (rx1 - lx0) * (ly1 - ry0));
   }
}

/* Compute rectangle area */
gdouble
rectang_area(gdouble rx0, gdouble ry0, gdouble rx1, gdouble ry1, gdouble tx0,
             gdouble ty0, gdouble tx1, gdouble ty1) {
       /* Compute overlapping box */
   if (tx0 > rx0)
      rx0 = tx0;
   if (ty0 > ry0)
      ry0 = ty0;
   if (tx1 < rx1)
      rx1 = tx1;
   if (ty1 < ry1)
      ry1 = ty1;
   if (rx1 <= rx0 || ry1 <= ry0)
      return 0.0;
   return (rx1 - rx0) * (ry1 - ry0);
}

/*
 * Local Variables:
 * mode: C
 * c-auto-newline: t
 * c-indent-level: 3
 *
 * End:
 */

/* end of file: nlfilt/nlfilt.c */