Commit c09bc96b by Jiri (George) Lebl Committed by George Lebl

### remove IsGaussianInteger, we already have IsGaussInteger alias

```
Tue Oct 23 11:33:56 2007  Jiri (George) Lebl <jirka@5z.com>

* lib/functions/numerical.gel: remove IsGaussianInteger, we already
have IsGaussInteger alias IsComplexInteger

* help/C/gel-function-list.xml: updates and fixes

svn path=/trunk/; revision=574```
parent 81dca6c8
 Tue Oct 23 11:33:56 2007 Jiri (George) Lebl * lib/functions/numerical.gel: remove IsGaussianInteger, we already have IsGaussInteger alias IsComplexInteger * help/C/gel-function-list.xml: updates and fixes Tue Oct 23 10:51:24 2007 Jiri (George) Lebl * src/gnome-genius.c: better logic for figuring out something is a ... ...
 ... ... @@ -685,7 +685,7 @@ avoid them being accidentally overridden. Planetmath (absolute value), Planetmath (modulus), Mathworld (absolute value) or Mathworld (complex modulus) Mathworld (complex modulus) for more information. ... ... @@ -774,14 +774,6 @@ for more information. IsGaussianInteger IsGaussianInteger (z) Check if argument is a gaussian integer. IsInteger ... ... @@ -3354,7 +3346,28 @@ function of two arguments or it can be a matrix giving a sesquilinear form. Multinomial Multinomial (v,arg...) Calculate multinomial coefficients. Calculate multinomial coefficients. Takes a vector of k nonnegative integers and computes the multinomial coefficient. This corresponds to the coefficient in the homogeneous polynomial in k variables with the corresponding powers. The formula for Multinomial(a,b,c) can be written as: (a+b+c)! / (a!b!c!) In other words, if we would have only two elements, then Multinomial(a,b) is the same thing as Binomial(a+b,a) or Binomial(a+b,b). See Planetmath, Mathworld, or Wikipedia for more information. ... ... @@ -3403,7 +3416,12 @@ do ( Permutations Permutations (k,n) Get all permutations of k numbers from 1 to n as a vector of vectors. Get all permutations of k numbers from 1 to n as a vector of vectors. See Mathworld or Wikipedia for more information. ... ... @@ -3486,7 +3504,13 @@ do ( nPr nPr (n,r) Calculate permutations. Calculate the number of permutations of size rof numbers from 1 to n. See Mathworld or Wikipedia for more information. ... ... @@ -4366,7 +4390,7 @@ do ( SymbolicDerivativeTry (f) Attempt to symbolically differentiate the function f, where f is a function of one variable, returns null if unsuccessful but is silent. (See SymbolicDerivative) (See SymbolicDerivative) ... ... @@ -4376,7 +4400,7 @@ do ( SymbolicNthDerivative (f,n) Attempt to symbolically differentiate a function n times. (See SymbolicDerivative) (See SymbolicDerivative) ... ... @@ -4386,7 +4410,7 @@ do ( SymbolicNthDerivativeTry (f,n) Attempt to symbolically differentiate a function n times quietly and return null on failure (See SymbolicNthDerivative) (See SymbolicNthDerivative) ... ... @@ -4396,7 +4420,7 @@ do ( SymbolicTaylorApproximationFunction (f,x0,n) Attempt to construct the taylor approximation function around x0 to the nth degree. (See SymbolicDerivative) (See SymbolicDerivative) ... ... @@ -4418,7 +4442,7 @@ do ( x1, x2, y1, y2. If limits are not specified, then the currently set limits apply (See LinePlotWindow) (See LinePlotWindow) Examples: ... ... @@ -4475,8 +4499,8 @@ do ( LinePlotParametric (xfunc,yfunc,t1,t2,tinc,x1,x2,y1,y2) Plot a parametric function with a line. First come the functions for x and y then optionally the t limits as t1,t2,tinc, then optionally the limits as x1,x2,y1,y2. for x and y then optionally the t limits as t1,t2,tinc, then optionally the limits as x1,x2,y1,y2. ... ... @@ -4489,8 +4513,9 @@ limits as x1,x2,y1,y2. LinePlotCParametric (func,t1,t2,tinc,x1,x2,y1,y2) Plot a parametric complex valued function with a line. First comes the function that returns x+iy then optionally the t limits as t1,t2,tinc, then optionally the limits as x1,x2,y1,y2. the function that returns x+iy, then optionally the t limits as t1,t2,tinc, then optionally the limits as x1,x2,y1,y2. ... ... @@ -4505,7 +4530,7 @@ optionally the limits as x1,x2,y1,y2. y1, y2, z1, z2. If limits are not specified, then the currently set limits apply (See SurfacePlotWindow). (See SurfacePlotWindow). Genius can only plot a single surface function at this time. ... ...
 ... ... @@ -2256,12 +2256,6 @@ Check if argument is a possibly complex integer. IsGaussianInteger IsGaussianInteger (z) Check if argument is a gaussian integer. IsInteger IsInteger (num) ... ... @@ -4148,7 +4142,20 @@ Multinomial (v,arg...) Calculate multinomial coefficients. Calculate multinomial coefficients. Takes a vector of k nonnegative integers and computes the multinomial coefficient. This corresponds to the coefficient in the homogeneous polynomial in k variables with the corresponding powers. The formula for Multinomial(a,b,c) can be written as: (a+b+c)! / (a!b!c!) In other words, if we would have only two elements, then Multinomial(a,b) is the same thing as Binomial(a+b,a) or Binomial(a+b,b). See Planetmath, Mathworld, or Wikipedia for more information. NextCombination ... ... @@ -4192,6 +4199,8 @@ Get all permutations of k numbers from 1 to n as a vector of vectors. See Mathworld or Wikipedia for more information. RisingFactorial RisingFactorial (n,k) ... ... @@ -4251,7 +4260,10 @@ nPr (n,r) Calculate permutations. Calculate the number of permutations of size rof numbers from 1 to n. See Mathworld or Wikipedia for more information. ---------------------------------------------------------------------- ... ... @@ -5001,7 +5013,7 @@ LinePlotCParametric (func,t1,t2,tinc,x1,x2,y1,y2) Plot a parametric complex valued function with a line. First comes the function that returns x+iy then optionally the t limits comes the function that returns x+iy, then optionally the t limits as t1,t2,tinc, then optionally the limits as x1,x2,y1,y2. SurfacePlot ... ...
 ... ... @@ -57,14 +57,6 @@ function Chop(x) = ) protect ("Chop") #----- # A complex number is a gaussian integer iff # its real and complex parts are integers SetHelp ("IsGaussianInteger", "numeric", "Check if argument is a gaussian integer") function IsGaussianInteger(z) = ( IsInteger(Re(z)) and IsInteger(Im(z)) ) protect ("IsGaussianInteger") #----- # Mod (built-in) # FIXME: Mod with offset (m mod n offset d = something in [d,d+n-1]) ... ...
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment